Ac Response of Heterogeneous Materials: A Numerical Study

1996 ◽  
Vol 463 ◽  
Author(s):  
A. A. Rodriguez ◽  
J. Valbuena

ABSTRACTThe ac and dc electrical properties of composite materials are studied using hierarchical lattices. First we show that the hierarchical model can correctly account for the main scaling properties of critical percolative structures. Then we study the effect of potential disorder by assuming that the microscopic conductances are distributed according to a power law distribution function. We find that in the limit of strong disorder, the predictions are in qualitative agreement with reported experimental measurements.

Fractals ◽  
2015 ◽  
Vol 23 (04) ◽  
pp. 1550042 ◽  
Author(s):  
CÉCILE MONTHUS

For Gaussian Spin-Glasses in low dimensions, we introduce a simple Strong Disorder renormalization at zero temperature in order to construct ground states for Periodic and Anti-Periodic boundary conditions. The numerical study in dimensions [Formula: see text] (up to sizes [Formula: see text]) and [Formula: see text] (up to sizes [Formula: see text]) yields that Domain Walls are fractal of dimensions [Formula: see text] and [Formula: see text], respectively.


1982 ◽  
Vol 71 (2) ◽  
pp. K181-K186 ◽  
Author(s):  
C. R. Dutta ◽  
K. Barua

Author(s):  
R. V. Chima ◽  
E. R. McFarland ◽  
J. R. Wood ◽  
J. Lepicovsky

The transonic flutter cascade facility at NASA Glenn Research Center was redesigned based on a combined program of experimental measurements and numerical analyses. The objectives of the redesign were to improve the periodicity of the cascade in steady operation, and to better quantify the inlet and exit flow conditions needed for CFD predictions. Part I of this paper describes the experimental measurements, which included static pressure measurements on the blade and endwalls made using both static taps and pressure sensitive paints, cobra probe measurements of the endwall boundary layers and blade wakes, and shadowgraphs of the wave structure. Part II of this paper describes three CFD codes used to analyze the facility, including a multibody panel code, a quasi-three-dimensional viscous code, and a fully three-dimensional viscous code. The measurements and analyses both showed that the operation of the cascade was heavily dependent on the configuration of the sidewalls. Four configurations of the sidewalls were studied and the results are described. For the final configuration, the quasi-three-dimensional viscous code was used to predict the location of mid-passage streamlines for a perfectly periodic cascade. By arranging the tunnel sidewalls to approximate these streamlines, side-wall interference was minimized and excellent periodicity was obtained.


Sign in / Sign up

Export Citation Format

Share Document