Formation and Binding Energies of Vacancy Clusters in Silicon

1997 ◽  
Vol 469 ◽  
Author(s):  
L. Colombo ◽  
A. Bongiorno ◽  
T. Diaz De La Rubia

ABSTRACTWe critically readdress the problem of vacancy clustering in silicon by perform large-scale tight-binding molecular dynamics simulations. We also compare the results of this quantum-mechanical approach to the widely used model-potential molecular dynamics scheme based on the Tersoff and Stillinger-Weber interatomic potentials.

1995 ◽  
Vol 396 ◽  
Author(s):  
M. tang ◽  
L. colombo ◽  
T. Diaz De La Rubia

AbstractTight-binding molecular dynamics (TBMD) simulations are performed (i) to evaluate the formation and binding energies of point defects and defect clusters, (ii) to compute the diffusivity of self-interstitial and vacancy in crystalline silicon, and (iii) to characterize the diffusion path and mechanism at the atomistic level. In addition, the interaction between individual defects and their clustering is investigated.


MRS Advances ◽  
2017 ◽  
Vol 2 (48) ◽  
pp. 2597-2602 ◽  
Author(s):  
Clarence C Matthai ◽  
Jessica Rainbow

ABSTRACTMolecular dynamics simulations of the melting process of bulk copper were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) with the interatomic potentials being described by the embedded atom method. The aim of the study was to understand the effects of high pressures and defects on the melting temperature. The simulations were visualised using Visual Molecular Dynamics (VMD). The melting temperature of a perfect copper crystal, was found to be slightly higher than the experimentally observed value. The melting temperature as a function of pressure was determined and compared with experiment. Point and line defects, in the form of dislocations, were then introduced into crystal and the new melting temperature of the crystal determined. We find that the melting temperature decreases as the defect density is increased. Additionally, the slope of the melting temperature curve was found to decrease as the pressure was increased while the vacancy formation energy increases with pressure.


1994 ◽  
Vol 336 ◽  
Author(s):  
Qiming Li ◽  
R. Biswas ◽  
C.M. Soukoulis

ABSTRACTA new tight-binding molecular dynamics approach for Si-H systems is developed using the valence orbitale of Si and H for calculation of atomic forces. Previous tight-binding models are not able to describe formation energies of different charge states of H in c-Si and new physics is introduced in our model to describe both effects of charge transfer and varying atomic environments. The Si-H Model was developed by fitting to silane, and ensuring that the formation energies of different charge states of H in c-Si were correctly described. This new model also describes well vibrational properties of SiHn configurations, and the structural and electronic properties of a-Si:H Models. The new molecular dynamics utilizes quantum mechanical forces, incorporating important electronic effects, and is robust enough to simulate hundreds of atoms as would be needed in realistic a-Si:H systems.


2002 ◽  
Vol 731 ◽  
Author(s):  
David A. Richie ◽  
Jeongnim Kim ◽  
Richard Hennig ◽  
Kaden Hazzard ◽  
Steve Barr ◽  
...  

AbstractThe simulation of defect dynamics and evolution is a technologicaly relevant challenge for computational materials science. The diffusion of small defects in silicon unfolds as a sequence of structural transitions. The relative infrequency of transition events requires simulation over extremely long time scales. We simulate the diffusion of small interstitial clusters (I1, I2, I3) for a range of temperatures using large-scale molecular dynamics (MD) simulations with a realistic tight-binding potential. A total of 0.25 μ sec of simulation time is accumulated for the study. A novel real-time multiresolution analysis (RTMRA) technique extracts stable structures directly from the dynamics without structural relaxation. The discovered structures are relaxed to confirm their stability.


Sign in / Sign up

Export Citation Format

Share Document