scholarly journals Molecular Dynamics Studies of the Melting of Copper with Vacancies amd Dislocations at High Pressures

MRS Advances ◽  
2017 ◽  
Vol 2 (48) ◽  
pp. 2597-2602 ◽  
Author(s):  
Clarence C Matthai ◽  
Jessica Rainbow

ABSTRACTMolecular dynamics simulations of the melting process of bulk copper were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) with the interatomic potentials being described by the embedded atom method. The aim of the study was to understand the effects of high pressures and defects on the melting temperature. The simulations were visualised using Visual Molecular Dynamics (VMD). The melting temperature of a perfect copper crystal, was found to be slightly higher than the experimentally observed value. The melting temperature as a function of pressure was determined and compared with experiment. Point and line defects, in the form of dislocations, were then introduced into crystal and the new melting temperature of the crystal determined. We find that the melting temperature decreases as the defect density is increased. Additionally, the slope of the melting temperature curve was found to decrease as the pressure was increased while the vacancy formation energy increases with pressure.

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5351
Author(s):  
Ahmed Tamer AlMotasem ◽  
Matthias Posselt ◽  
Tomas Polcar

In the present work, modified embedded atom potential and large-scale molecular dynamics’ simulations were used to explore the effect of grain boundary (GB) segregated foreign interstitials on the deformation behavior of nanocrystalline (nc) iron. As a case study, carbon and nitrogen (about 2.5 at.%) were added to (nc) iron. The tensile test results showed that, at the onset of plasticity, grain boundary sliding mediated was dominated, whereas both dislocations and twinning were prevailing deformation mechanisms at high strain. Adding C/N into GBs reduces the free excess volume and consequently increases resistance to GB sliding. In agreement with experiments, the flow stress increased due to the presence of carbon or nitrogen and carbon had the stronger impact. Additionally, the simulation results revealed that GB reduction and suppressing GBs’ dislocation were the primary cause for GB strengthening. Moreover, we also found that the stress required for both intragranular dislocation and twinning nucleation were strongly dependent on the solute type.


1989 ◽  
Vol 157 ◽  
Author(s):  
Michael J. Sabochick ◽  
Nghi Q. Lam

ABSTRACTRadiation-induced amorphization of the crystalline compound CuTi was investigated by molecular-dynamics simulations using new interatomic potentials derived from the embedded-atom method. Two different approaches to amorphization were tried: one in which Cu and Ti atoms were randomly exchanged, and another in which Frenkel pairs were introduced at random. The potential energy, volume expansion and pair-correlation function were calculated as functions of chemical disorder and atomic displacements. The results indicate that, although both chemical disordering and point-defect introduction increase the system energy and volume, the presence of Frenkel pairs is essential to trigger the crystalline-to-amorphous transition.


1988 ◽  
Vol 133 ◽  
Author(s):  
P. C. Clapp ◽  
M. J. Rubins ◽  
S. Charpenay ◽  
J. A. Rifkin ◽  
Z. Z. Yu ◽  
...  

ABSTRACTCalculations of the surface free energy and anti-phase boundary energy as a function of low index orientations and temperature have been determined for equiatomic perfectly ordered bcc NiAl via molecular dynamics computer simulations. The simulations utilized an Embedded Atom Method calculation of the interatomic potentials and volume forces in the Ni-As alloy system. Values of about 0.95, 1.6, 1.9 and 2.0 J/m2 were found for surface energies of the {100}, {110}, {112} and {111} orientations:, respectively. APB energies of about 0.24 and 0.38 J/m2 were determined for {110} and {112} boundaries, respectively. In addition, we have examined the phase stability and relative energies of the ordered bcc, fcc and bct phases at low temperature, and find a bct phase with c/a = 1.32 slightly lower in energy than the bcc, presaging the martensitic transformation that occurs at finite temperatures in more nickel rich alloys.


1997 ◽  
Vol 469 ◽  
Author(s):  
L. Colombo ◽  
A. Bongiorno ◽  
T. Diaz De La Rubia

ABSTRACTWe critically readdress the problem of vacancy clustering in silicon by perform large-scale tight-binding molecular dynamics simulations. We also compare the results of this quantum-mechanical approach to the widely used model-potential molecular dynamics scheme based on the Tersoff and Stillinger-Weber interatomic potentials.


2013 ◽  
Vol 20 (4) ◽  
pp. 555-566 ◽  
Author(s):  
M. A. Karolewski ◽  
R. G. Cavell ◽  
R. A. Gordon ◽  
C. J. Glover ◽  
M. Cheah ◽  
...  

The ability of molecular dynamics (MD) simulations to support the analysis of X-ray absorption fine-structure (XAFS) data for metals is evaluated. The low-order cumulants (ΔR, σ2,C3) for XAFS scattering paths are calculated for the metals Cu, Ni, Fe, Ti and Au at 300 K using 28 interatomic potentials of the embedded-atom method type. The MD cumulant predictions were evaluated within a cumulant expansion XAFS fitting model, using global (path-independent) scaling factors. Direct simulations of the corresponding XAFS spectra, χ(R), are also performed using MD configurational data in combination with theFEFFab initiocode. The cumulant scaling parameters compensate for differences between the real and effective scattering path distributions, and for any errors that might exist in the MD predictions and in the experimental data. The fitted value of ΔRis susceptible to experimental errors and inadvertent lattice thermal expansion in the simulation crystallites. The unadjusted predictions of σ2vary in accuracy, but do not show a consistent bias for any metal except Au, for which all potentials overestimate σ2. The unadjustedC3predictions produced by different potentials display only order-of-magnitude consistency. The accuracy of direct simulations of χ(R) for a given metal varies among the different potentials. For each of the metals Cu, Ni, Fe and Ti, one or more of the tested potentials was found to provide a reasonable simulation of χ(R). However, none of the potentials tested for Au was sufficiently accurate for this purpose.


1997 ◽  
Vol 491 ◽  
Author(s):  
Y. Kogure ◽  
M. Doyama

ABSTRACTPotential functions used in molecular dynamics simulations for metals are characterized through a calculation of the third-order elastic constants, the Gruneisen parameters, and the molecular dynamics simulation of point defects. The Lennard-Jones potential and the embedded atom method potentials for noble metals (Cu, Ag, Au) are characterized by using a common program code.


1998 ◽  
Vol 13 (12) ◽  
pp. 3478-3484 ◽  
Author(s):  
S. Swaminarayan ◽  
R. LeSar ◽  
P. Lomdahl ◽  
D. Beazley

We present results of a large-scale atomistic study of the annihilation of oppositely signed screw dislocations in an fcc metal using molecular dynamics (MD) and an Embedded-Atom-Method (EAM) potential for Cu. The mechanisms of the annihilation process are studied in detail. From the simulation results, we determined the interaction energy between the dislocations as a function of separation. These results are compared with predictions from linear elasticity to examine the onset of non-linear-elastic interactions. The applicability of heuristic models for annihilation of dislocations in large-scale dislocation dynamics simulations is discussed in the light of these results.


Sign in / Sign up

Export Citation Format

Share Document