Stability of P-I-N Amorphous Silicon Solar Cells with Boron-Doped and Undoped I-Layers

1985 ◽  
Vol 49 ◽  
Author(s):  
Anthony Catalano ◽  
Rajeewa R. Arya ◽  
Ralph C. Kerns

AbstractBoron-doping the i-layer in p-i-n amorphous silicon solar cells improves the device performance when the density of impurities in the undoped i-layer material is high (< 1020 cm-3). While this technique can boost the initial device efficiencies for poor quality i-layer material, our devices degrade faster than devices made with undoped, low impurity i-layer material. We have measured the degradation of photovoltaic parameters as a function of continuous AM1 exposure time for devices with and without B-doped i-layers. For single junction p-i-n solar cells with comparable initial conversion efficiencies (< 7%, area < 1cm2) we find that our devices containing i-layers deposited from gas mixtures containing 2–3 ppm diborane degrade faster than devices containing undoped i-layers. Similar effects are observed when two-junction stacked cells with B-doped i-layers are compared to two-junction stacked cells with undoped i-layers.

1983 ◽  
Vol 54 (11) ◽  
pp. 6705-6707 ◽  
Author(s):  
Porponth Sichanugrist ◽  
Masatoshi Kumada ◽  
Makoto Konagai ◽  
Kiyoshi Takahashi ◽  
Koichiro Komori

2003 ◽  
Vol 762 ◽  
Author(s):  
K. Zhu ◽  
J. Yang ◽  
W. Wang ◽  
E. A. Schiff ◽  
J. Liang ◽  
...  

AbstractWe describe a model for a-Si:H based pin solar cells derived primarily from valence bandtail properties. We show how hole drift-mobility measurements and measurements of the temperature-dependence of the open-circuit voltage VOC can be used to estimate the parameters, and we present VOC(T) measurements. We compared the power density under solar illumination calculated with this model with published results for as-deposited a-Si:H solar cells. The agreement is within 4% for a range of thicknesses, suggesting that the power from as-deposited cells is close to the bandtail limit.


2002 ◽  
Vol 715 ◽  
Author(s):  
Wei Xu ◽  
P. C. Taylor

AbstractWe have made a series of a-SiSx:H based solar cells, with a pin structure, in a multichamber plasma enhanced chemical vapor deposition (PECVD) system. The sulfur concentration ranges from zero to 5 x 1018 cm-3 as measured by secondary ion mass spectroscopy. The initial conversion efficiencies of cells in this series with sulfur concentrations ≤ 1018 cm-3 are approximately 7%. The time constants for degradation increase with increasing sulfur concentration, but not fast enough to be of practical importance in photovoltaic devices.


Solar Cells ◽  
1986 ◽  
Vol 17 (2-3) ◽  
pp. 191-200 ◽  
Author(s):  
Tokumi Mase ◽  
Hiroshi Takei ◽  
Makoto Konagai ◽  
Kiyoshi Takahashi

Sign in / Sign up

Export Citation Format

Share Document