tetrahedral amorphous carbon
Recently Published Documents


TOTAL DOCUMENTS

518
(FIVE YEARS 37)

H-INDEX

51
(FIVE YEARS 3)

2021 ◽  
Vol 56 (33) ◽  
pp. 18740-18748
Author(s):  
L. Lorenz ◽  
T. Chudoba ◽  
S. Makowski ◽  
M. Zawischa ◽  
F. Schaller ◽  
...  

AbstractCoatings used in tribological applications often exhibit high hardness and stiffness to achieve high wear resistance. One coating characterization method frequently used is nanoindentation which allows the determination of indentation hardness and indentation modulus among other material properties. The indentation modulus describes the elastic surface behavior during indentation and is, among hardness, a direct indicator for wear resistance. To obtain the true indentation modulus of a coating, it must be measured with varying loads and then extrapolated to zero load. Current recommendation of the standard ISO 14577-4:2016 is a linear extrapolation which fits poorly for nonlinear curves. Such nonlinear curves are commonly found for high hardness mismatches between coating and substrate, for example, superhard tetrahedral amorphous carbon coatings (ta-C) on a steel substrate. In this study, we present a new empirical fit model, henceforth named sigmoid. This fit model is compared to several existing fit models described in the literature using a large number of nanoindentation measurements on ta-C coatings with wide ranges of indentation modulus and coating thickness. This is done by employing a user-independent and model agnostic fitting methodology. It is shown that the sigmoid model outperforms all other models in the combination of goodness of fit and stability of fit. Furthermore, we demonstrate that the sigmoid model’s fit parameter directly correlates with coating thickness and thus allows for a new approach of determining ta-C coating thickness from nanoindentation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Valentin R. Salinas Ruiz ◽  
Takuya Kuwahara ◽  
Jules Galipaud ◽  
Karine Masenelli-Varlot ◽  
Mohamed Ben Hassine ◽  
...  

AbstractFriction and wear reduction by diamond-like carbon (DLC) in automotive applications can be affected by zinc-dialkyldithiophosphate (ZDDP), which is widely used in engine oils. Our experiments show that DLC’s tribological behaviour in ZDDP-additivated oils can be optimised by tailoring its stiffness, surface nano-topography and hydrogen content. An optimal combination of ultralow friction and negligible wear is achieved using hydrogen-free tetrahedral amorphous carbon (ta-C) with moderate hardness. Softer coatings exhibit similarly low wear and thin ZDDP-derived patchy tribofilms but higher friction. Conversely, harder ta-Cs undergo severe wear and sub-surface sulphur contamination. Contact-mechanics and quantum-chemical simulations reveal that shear combined with the high local contact pressure caused by the contact stiffness and average surface slope of hard ta-Cs favour ZDDP fragmentation and sulphur release. In absence of hydrogen, this is followed by local surface cold welding and sub-surface mechanical mixing of sulphur resulting in a decrease of yield stress and wear.


Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 36
Author(s):  
Noriaki Matsunami ◽  
Masao Sataka ◽  
Satoru Okayasu ◽  
Bun Tsuchiya

It has been observed that modifications of non-metallic solids such as sputtering and surface morphology are induced by electronic excitation under high-energy ion impact and that these modifications depend on the charge of incident ions (charge-state effect or incident-charge effect). A simple model is described, consisting of an approximation to the mean-charge-evolution by saturation curves and the charge-dependent electronic stopping power, for the evaluation of the relative yield (e.g., electronic sputtering yield) of the non-equilibrium charge incidence over that of the equilibrium-charge incidence. It is found that the present model reasonably explains the charge state effect on the film thickness dependence of lattice disordering of WO3. On the other hand, the model appears to be inadequate to explain the charge-state effect on the electronic sputtering of WO3 and LiF. Brief descriptions are given for the charge-state effect on the electronic sputtering of SiO2, UO2 and UF4, and surface morphology modification of poly-methyl-methacrylate (PMMA), mica and tetrahedral amorphous carbon (ta-C).


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2176
Author(s):  
Frank Kaulfuss ◽  
Volker Weihnacht ◽  
Martin Zawischa ◽  
Lars Lorenz ◽  
Stefan Makowski ◽  
...  

In this study, both the plasma process of filtered laser-arc evaporation and the resulting properties of tetrahedral amorphous carbon coatings are investigated. The energy distribution of the plasma species and the arc spot dynamics during the arc evaporation are described. Different ta-C coatings are synthesized by varying the bias pulse time and temperature during deposition. An increase in hardness was observed with the increased overlapping of the bias and arc pulse times. External heating resulted in a significant loss of hardness. A strong discrepancy between the in-plane properties and the properties in the film normal direction was detected specifically for a medium temperature of 120 °C during deposition. Investigations using electron microscopy revealed that this strong anisotropy can be explained by the formation of nanocrystalline graphite areas and their orientation toward the film’s normal direction. This novel coating type differs from standard amorphous a-C and ta-C coatings and offers new possibilities for superior mechanical behavior due to its combination of a high hardness and low in-plane Young’s Modulus.


Friction ◽  
2021 ◽  
Author(s):  
Young-Jun Jang ◽  
Jae-Il Kim ◽  
WooYoung Lee ◽  
Jongkuk Kim

AbstractTetrahedral amorphous carbon (ta-C) has emerged as an excellent coating material for improving the reliability of application components under high normal loads. Herein, we present the results of our investigations regarding the mechanical and tribological properties of a 2-µm-thick multilayer ta-C coating on high-speed steel substrates. Multilayers composed of alternating soft and hard layers are fabricated using filtered a cathodic vacuum arc with alternating substrate bias voltages (0 and 100 V or 0 and 150 V). The thickness ratio is discovered to be 1:3 for the sp2-rich and sp3-rich layers. The results show that the hardness and elastic modulus of the multilayer ta-C coatings increase with the sp3 content of the hard layer. The hardness reached approximately 37 GPa, whereas an improved toughness and a higher adhesion strength (> 29 N) are obtained. The friction performance (µ = 0.07) of the multilayer coating is similar to that of the single layer ta-C thick coating, but the wear rate (0.13 × 10−6 mm3/(N·m)) improved under a high load of 30 N. We further demonstrate the importance of the multilayer structure in suppressing crack propagation and increasing the resistance to plastic deformation (H3/E2) ratio.


Sign in / Sign up

Export Citation Format

Share Document