Raman Microprobe Analysis of Laser-Induced Microstructures

1985 ◽  
Vol 51 ◽  
Author(s):  
P. M. Fauchet

ABSTRACTWe study the composition, stress and structure variations across periodic surface undulations produced by pulsed laser illumination of semiconductors, by explosive crystallization of amorphous films, and by laser-assisted CVD. These variations are mapped out with a one micron spatial resolution using a Raman microprobe. Similarities and differences between the three cases are pointed out. These results are also compared to those obtained by deliberately exposing the sample to interfering beams.

Author(s):  
J. Barbillat ◽  
M. Delhaye ◽  
P. Dhamelincourt

Raman mapping, with a spatial resolution close to the diffraction limit, can help to reveal the distribution of chemical species at the surface of an heterogeneous sample.As early as 1975,three methods of sample laser illumination and detector configuration have been proposed to perform Raman mapping at the microscopic level (Fig. 1),:- Point illumination:The basic design of the instrument is a classical Raman microprobe equipped with a PM tube or either a linear photodiode array or a two-dimensional CCD detector. A laser beam is focused on a very small area ,close to the diffraction limit.In order to explore the whole surface of the sample,the specimen is moved sequentially beneath the microscope by means of a motorized XY stage. For each point analyzed, a complete spectrum is obtained from which spectral information of interest is extracted for Raman image reconstruction.- Line illuminationA narrow laser line is focused onto the sample either by a cylindrical lens or by a scanning device and is optically conjugated with the entrance slit of the stigmatic spectrograph.


1984 ◽  
Vol 107 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Nicole Guilhaumou ◽  
Bruce Velde ◽  
Claire Beny

1991 ◽  
Vol 243 ◽  
Author(s):  
C. K. Chiang ◽  
W. Wong-Ng ◽  
L. P. Cook ◽  
P. K. Schenck ◽  
H. M. Lee ◽  
...  

AbstractPZT thin films were prepared by pulsed laser deposition on unheated Ptcoated Si substrates. As deposited, the films were amorphous. Films crystallized at 550 - 600 °C to produce predominantly crystalline ferroelectric PZT. Crystallization of the amorphous material was accompanied by a linear shrinkage of ∼2 %, as manifested in development of cracks in the film. Spacing, width and morphology of larger cracks followed a regular progression with decreasing film thickness. For film thicknesses less than 500 runm, much of the shrinkage was taken up by small, closely-spaced cracks of local extent. Implications for measurement of PZT thin film ferroelectric properties and processing are discussed.


2020 ◽  
Vol 14 (4) ◽  
pp. 552-559
Author(s):  
Shuhei Kodama ◽  
Keita Shimada ◽  
Masayoshi Mizutani ◽  
Tsunemoto Kuriyagawa ◽  
◽  
...  

Compared with traditional nanotexturing methods, an ultrashort-pulsed laser is an efficient technology of fabricating nanostructures called laser-induced periodic surface structures (LIPSS) on material surfaces. LIPSS are easily fabricated when the pulse duration is shorter than collisional relaxation time (CRT). Accordingly, ultrashort-pulsed lasers have been mainly used to study LIPSS, but they unstably irradiate while requiring high costs. Although long-pulsed lasers have low cost and high stability, the phenomena (such as the effect of pulse duration, laser wavelength, and heat) of the LIPSS fabricated using short-pulsed lasers with the pulse duration close to the maximum CRT, which is greater than femtosecond, have not been clarified. However, the nanosecond pulse laser has been reported to produce LIPSS, but those were unclear and ununiform. In this study, the short-pulsed laser with the pulse duration of 20 ps, which is close to the maximum CRT, was employed to clarify the effects of pulse duration and heat on the fabrication of LIPSS and to solve problems associated with ultrashort-pulsed lasers. First, a finite-difference time-domain simulation was developed at 20-ps pulse duration to investigate the effects of irradiation conditions on the electric-field-intensity distribution. Subsequently, experiments were conducted using the 20-ps pulse laser by varying conditions. The aspect ratio of the LIPSS obtained was greater than that of the LIPSS fabricated using ultrashort-pulsed lasers, but LIPSS were not fabricated at 355- and 266-nm laser wavelength. In addition, the short-pulsed laser experienced thermal influences and a cooling material was effective for the fabrication of LIPSS with high-aspect-ratio. This demonstrates the effects of pulse duration close to the CRT and heat on the fabrication of LIPSS.


1965 ◽  
Vol 4 (11) ◽  
pp. 1509 ◽  
Author(s):  
A.D. Jacobson ◽  
F. J. McClung

1987 ◽  
Vol 2 (5) ◽  
pp. 648-680 ◽  
Author(s):  
D. H. Lowndes ◽  
S. J. Pennycook ◽  
G. E. Jellison ◽  
S. P. Withrow ◽  
D. N. Mashburn

Nanosecond resolution time-resolved visible (632.8 nm) and infrared (1152 nm) reflectivity measurements, together with structural and Z-contrast transmission electron microscope (TEM) imaging, have been used to study pulsed laser melting and subsequent solidification of thick (190–410 nm) amorphous (a) Si layers produced by ion implantation. Melting was initiated using a KrF (248 nm) excimer laser of relatively long [45 ns full width half maximum (FWHM)] pulse duration; the microstructural and time-resolved measurements cover the entire energy density (E1) range from the onset of melting (at ∼ 0.12J/cm2) up to the onset of epitaxial regrowth (at ∼ 1.1 J/cm2). At low E1 the infrared reflectivity measurements were used to determine the time of formation, the velocity, and the final depth of “explosively” propagating buried liquid layers in 410 nm thick a-Si specimens that had been uniformly implanted with Si, Ge, or Cu over their upper ∼ 300 nm. Measured velocities lie in the 8–14 m/s range, with generally higher velocities obtained for the Ge- and Cu-implanted “a-Si alloys.” The velocity measurements result in an upper limit of 17 (± 3) K on the undercooling versus velocity relationship for an undercooled solidfying liquid-crystalline Si interface. The Z-contrast scanning TEM measurements of the final buried layer depth were in excellent agreement with the optical measurements. The TEM study also shows that the “fine-grained polycrystalline Si” region produced by explosive crystallization of a-Si actually contains large numbers of disk-shaped Si flakes that can be seen only in plan view. These Si flakes have highly amorphous centers and laterally increasing crystallinity; they apparently grow primarily in the lateral direction. Flakes having this structure were found both at the surface, at low laser E1, and also deep beneath the surface, throughout the “fine-grained poly-Si” region formed by explosive crystallization, at higher E1. Our conclusion that this region is partially amorphous (the centers of flakes) differs from earlier results. The combined structural and optical measurements suggest that Si flakes nucleate at the undercooled liquid-amorphous interface and are the crystallization events that initiate explosive crystallization. Time-resolved reflectivity measurements reveal that the surface melt duration of the 410 nm thick a-Si specimens increases rapidly for 0.3E1 <0.6 J/cm2, but then remains nearly constant for E1 up to ∼ 1.0 J/cm2. For 0.3 < E1 < 0.6 J/cm2 the reflectivity exhibits a slowly decaying behavior as the near-surface pool of liquid Si fills up with growing large grains of Si. For higher E1, a flat-topped reflectivity signal is obtained and the microstructural and optical studies together show that the principal process occurring is increasingly deep melting followed by more uniform regrowth of large grains back to the surface. However, cross-section TEM shows that a thin layer of fine-grained poly-Si still is formed deep beneath the surface for E1<0.9 J/cm2, implying that explosive crystallization occurs (probably early in the laser pulse) even at these high E1 values. The onset of epitaxial regrowth at E1 = 1.1 J/cm2 is marked by a slight decrease in surface melt duration.


Sign in / Sign up

Export Citation Format

Share Document