A Novel Versatile Process for the Production of Polymer Foams

1998 ◽  
Vol 550 ◽  
Author(s):  
V.P. Shastri ◽  
I. Martin ◽  
R. Langer

AbstractPorous polymeric media are used in several applications such as solid supports for separations and catalysis, as well as biomedical applications such as vascular grafts and wound dressings. We have developed a novel versatile process to produce polymeric cellular solids. This process which is based on a phase extraction-co-polymer precipitation is applicable to a wide range of polymer systems including water soluble polymers. It is capable of yielding polymer foams of high porosity (> 90%) and excellent mechanical characteristics in a very short time (less than 2 hours) without limitations in foam thickness. Polymer foam with such characteristics have great utility in tissue engineering applications. We have successfully explored polymer foams of biocompatible polymers produced by the presented approach for bone and cartilage engineering using bone marrow stromal cells.

RSC Advances ◽  
2020 ◽  
Vol 10 (62) ◽  
pp. 38069-38074
Author(s):  
Sumant Dwivedi ◽  
Aniruddha Nag ◽  
Shigeki Sakamoto ◽  
Yasuyoshi Funahashi ◽  
Toyohiro Harimoto ◽  
...  

High-performance water-soluble polymers have a wide range of applications from engineering materials to biomedical plastics. This article discusses the synthesis of water-soluble polyimide from bio-based monomers.


2013 ◽  
Vol 62 (1) ◽  
Author(s):  
Issham Ismail ◽  
Nur Suriani Mamat ◽  
Baihaqi Mamat ◽  
Ahmad Shamsulizwan Ismail ◽  
Azmi Kamis ◽  
...  

An underbalanced drilling using foam drilling fluid is one of the most effective solutions which are capable of preventing formation damage, differential sticking, or circulation lost. Nevertheless, the limitation of using foam drilling fluid is the stability of its rheological properties which would affect its lubricity characteristics. Therefore, a research study was carried out to determine the stability and effectiveness of water soluble polymers as an additive in foam drilling fluid. To produce the required and most stable foam, four types of surfactants had been tested, namely sodium dodecyl sulfate (anionic), cetyltrimethylammonium bromide (cationic), T×100 (non ionic), and n-alkyl betaines (amphoteric). Then, the water soluble polymers, namely xanthan gum, hydroxyethyl cellulose, guar gum, and carboxymethyl cellulose, were evaluated as a stabilizer in the said foam drilling fluid. The laboratory works involved lubricity and rheological properties tests, which were conducted at ambient condition. The experimental results showed that the use of xanthan gum with anionic surfactant produced the most stable foam drilling fluid compared to other polymers. Rheological properties of the polymer foam drilling fluid were compared with water-based mud, and it was revealed that polymer foam drilling fluid could perform as effective as the latter. The significant advantage of using polymer foam drilling fluid was its coefficient of friction which was found to be lower than the water-based mud. 


1981 ◽  
Vol 23 (2) ◽  
pp. 104-106 ◽  
Author(s):  
A. V. Tolstousov ◽  
O. A. Bannykh

Soft Matter ◽  
2021 ◽  
Author(s):  
Helen Yao ◽  
Bradley D. Olsen

Small-angle neutron scattering is used to measure the number of bound water molecules associating with three polymers over a wide concentration range. Different fitting workflows are evaluated and recommended depending on the concentration regime.


Author(s):  
Mohsen Mirzaie Yegane ◽  
Julia Schmidt ◽  
Fatima Dugonjic-Bilic ◽  
Benjamin Gerlach ◽  
Pouyan E. Boukany ◽  
...  

2016 ◽  
Vol 134 (9) ◽  
Author(s):  
Denise Karamessini ◽  
Georgia Ch. Lainioti ◽  
Valadoula Deimede ◽  
Joannis K. Kallitsis

Sign in / Sign up

Export Citation Format

Share Document