sodium acrylate
Recently Published Documents


TOTAL DOCUMENTS

478
(FIVE YEARS 57)

H-INDEX

43
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
pp. 314
Author(s):  
Sylwia Cukrowicz ◽  
Paweł Goj ◽  
Paweł Stoch ◽  
Artur Bobrowski ◽  
Bożena Tyliszczak ◽  
...  

This study complements the knowledge about organobentonites, which are intended to be new binders in foundry technology. In the developed materials, acrylic polymers act as mineral modifying compounds. Modification of montmorillonite in bentonite was carried out in order to obtain a composite containing a polymer as a lustrous carbon precursor. The polymer undergoes thermal degradation during the casting process, which results in the formation of this specific carbon form, ensuring the appropriate quality of the casting surface without negative environmental impact. The present paper reports the results of computational simulation studies (LAMMPS software) aimed at broadening the knowledge of interactions of organic molecules in the form of acrylic acid and acrylate anions (from sodium acrylate) near the montmorillonite surface, which is a simplified model of bentonite/acrylic polymer systems. It has been proven that the –COOH group promotes the adsorption of acrylic acid (AA) to the mineral surface, while acrylate ions tend to be unpredictably scattered, which may be related to the electrostatic repulsion between anions and negatively charged clay surfaces. The simulation results are consistent with the results of structural tests carried out for actual organobentonites. It has been proven that the polymer mainly adsorbs on the mineral surface, although it also partially intercalates into the interlayer spaces of the montmorillonite. This comprehensive research approach is innovative in the engineering of foundry materials. Computer simulation methods have not been used in the production of new binding materials in molding sand technology so far.


SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Miguel Mejía ◽  
Gary A. Pope ◽  
Haofeng Song ◽  
Matthew T. Balhoff

Summary New experiments using polyethylene oxide (PEO) polymer were performed to evaluate its potential for enhanced oil recovery (EOR) applications in low-permeability reservoirs. This is the first time that high molecular weight PEO solutions have been shown to have favorable transport in low-permeability (~20 md) carbonate cores and the first time PEO has been shown to improve oil recovery in a fractured carbonate core. Rheology measurements in synthetic seawater show the higher viscosity of PEO solutions compares favorably to the viscosity of acrylamide–sodium acrylate (AM-AA) copolymers of similar molecular weight because PEO is less sensitive to hardness and high salinity. Filtration experiments using 0.45 μm cellulose filters show very favorable filtration ratios of PEO with a molecular weight of 4 million g/mol, which is consistent with its favorable transport in low-permeability cores. Four coreflood experiments in Texas Cream Limestone (TC Limestone) cores demonstrate the viability of PEO for EOR in low-permeability carbonate rocks. Single-phase experiments show 4 million g/mol PEO solutions transported through 18 and 28 md TC Limestone cores. Oil recovery experiments show 4 million g/mol PEO solutions transported and was more efficient than waterflooding in aged TC Limestone with favorable retention of 40 µg/g rock. An oil recovery experiment in an artificially fractured TC Limestone core improved oil recovery by a remarkable 15% considering the very large fracture-matrix permeability contrast (>7,000). These experimental results as well as other favorable properties of PEO reported in the literature indicate PEO should be considered for some EOR applications, especially in low-permeability reservoirs.


2021 ◽  
Vol 899 ◽  
pp. 92-97
Author(s):  
Lidia Kropotova ◽  
Alexandra O. Grigoreva ◽  
A.E. Mochalova

pH-sensitive hydrogels based on chitosan-graft-poly(acrylamide-co-sodium acrylate) were synthesized via radical polymerization in solution. Ammonium persulfate was used as initiator, and various amounts of hexamine were used as a cross-linking agent. The structure of obtained hydrogels was characterized by Fourier transform infrared spectroscopy. Moisture-absorbing power of hydrogels in buffer solution with various pH value (pH = 1.65; 4.01; 12.43) was investigated. It is turned out that such a copolymers have a high moisture retention capacity (swelling index attains the value 1100%) and are capable for reusing, that makes it possible to apply the hydrogels in different areas.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenbo Wang ◽  
Xiangyu Liu ◽  
Xue Wang ◽  
Li Zong ◽  
Yuru Kang ◽  
...  

A porous semi-interpenetrating network (semi-IPN) hydrogel adsorbent with excellent adsorption properties and removal efficiency towards Pb(II) was prepared by a facile grafting polymerization reaction in aqueous medium using natural biopolymer sodium alginate (SA) as the main chains, sodium acrylate (NaA) as the monomers, and poly(vinyl alcohol) (PVA) as the semi-IPN component. FTIR, TGA and SEM analyses confirm that NaA monomers were grafted onto the macromolecular chains of SA, and PVA chains were interpenetrated and entangled with the crosslinked network. The incorporation of PVA facilitates to form pores on the surface of hydrogel adsorbent. The semi-IPN hydrogel containing 2 wt% of PVA exhibits high adsorption capacity and fast adsorption rate for Pb(II). The best adsorption capacity reaches 784.97 mg/g, and the optimal removal rate reaches 98.39% (adsorbent dosage, 2 g/L). In addition, the incorporation of PVA improved the gel strength of hydrogel, and the storage modulus of hydrogel increased by 19.4% after incorporating 2 wt% of PVA. The increase of gel strength facilitates to improve the reusability of hydrogel. After 5 times of regeneration, the adsorption capacity of SA-g-PNaA decreased by 23.2%, while the adsorption capacity of semi-IPN hydrogel only decreased by 10.8%. The adsorption kinetics of the hydrogel in the initial stage (the moment when the adsorbent contacts solution) and the second stage are fitted by segmentation. It is intriguing that the adsorption kinetics fits well with both pseudo-second-order kinetic model and pseudo-first-order model before 60 s, while only fits well with pseudo-second-order adsorption model in the whole adsorption process. The chemical complexing adsorption mainly contribute to the efficient capturing of Pb(II).


Author(s):  
Marko Milovanovic ◽  
Lydia Mihailowitsch ◽  
Mathusiha Santhirasegaran ◽  
Volker Brandt ◽  
Joerg C. Tiller

Abstract Hydrogels with good mechanical properties have great importance in biological and medical applications. Double-network (DN) hydrogels were found to be very tough materials. If one of the two network phases is an inorganic material, the DN hydrogels also become very stiff without losing their toughness. So far, the only example of such an organic–inorganic DN hydrogel is based on calcium phosphate, which takes about a week to be formed as an amorphous inorganic phase by enzyme-induced mineralization. An alternative organic–inorganic DN hydrogel, based on amorphous CaCO3, which can be formed as inorganic phase within hours, was designed in this study. The precipitation of CaCO3 within a hydrogel was induced by urease and a urea/CaCl2 calcification medium. The amorphous character of the CaCO3 was retained by using the previously reported crystallization inhibiting effects of N-(phosphonomethyl)glycine (PMGly). The connection between organic and inorganic phases via reversible bonds was realized by the introduction of ionic groups. The best results were obtained by copolymerization of acrylamide (AAm) and sodium acrylate (SA), which led to water-swollen organic–inorganic DN hydrogels with a high Young’s modulus (455 ± 80 MPa), remarkable tensile strength (3.4 ± 0.7 MPa) and fracture toughness (1.1 ± 0.2 kJ m−2). Graphical Abstract The present manuscript describes the method of enzymatic mineralization of hydrogels for the production of ultrastiff and strong composite hydrogels. By forming a double-network structure based on an organic and an inorganic phase, it is possible to improve the mechanical properties of a hydrogel, such as stiffness and strength, by several orders of magnitude. The key to this is the formation of a percolating, amorphous inorganic phase, which is achieved by inhibiting crystallization of precipitated amorphous CaCO3 with N-(phosphonomethyl)glycine and controlling the nanostructure with co polymerized sodium acrylate. This creates ultrastiff, strong and tough organic–inorganic double-network hydrogels.


Chemosphere ◽  
2021 ◽  
Vol 272 ◽  
pp. 129902
Author(s):  
Mengist Minale ◽  
Zaoli Gu ◽  
Awoke Guadie ◽  
Yuan Li ◽  
Yuan Wang ◽  
...  

Author(s):  
Beatrice Ehrke ◽  
Jan Erfkamp ◽  
Thomas Wallmersperger

Stimuli-responsive hydrogels consist of a porous 3D framework that is saturated with solvent. Immersed in a solution bath, these gels can exhibit an enormous volume change due to absorption or release of solution. Depending on the type of gel, this effect can be generated for example by variation of the ion concentration in the surrounding solution bath or by an applied electrical field. The mechanical behavior of these polymers is influenced not only by the solid-state skeleton, but also by the interacting fluid. Thus, a visco-elastic behavior can be observed on the macroscopic scale. Based on the specific properties of the polymer gel and the interaction of the different phases, the determination of the mechanical properties of this material turns out to be non-trivial. In the present work, the mechanical behavior of a poly(acrylamide-co-sodium acrylate) hydrogel in the fully swollen state is investigated by a newly developed tensile test and for longtime investigations by a creep test. For this purpose, two newly developed different experimental setups based on digital image correlation are used.


2021 ◽  
Vol 8 (4) ◽  
pp. 1-4
Author(s):  
Premalatha P V ◽  
Mary Jayamani K ◽  
Murali Krishnan V S ◽  
Parves Basha R

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2197
Author(s):  
Ana M. Borreguero ◽  
Javier Zamora ◽  
Ignacio Garrido ◽  
Manuel Carmona ◽  
Juan F. Rodríguez

Hydrophilic, flexible polyurethane (FPU) foams made from Hypol prepolymers are capable of retaining large amounts of water and saline solutions. The addition of different catalysts and surfactant agents to Hypol JM 5008 prepolymer was assayed to obtain a foam with good structural stability and elasticity. The combination of three catalysts, stannous octoate and two amine-based ones (Tegoamin 33 and Tegoamin BDE), and the surfactant Niax silicone L-620LV allowed to synthesize a foam with a homogeneous cell size distribution, exhibiting the highest saline absorption capacity (2.4 g/gram of foam) and almost complete shape recovery, with up to a 20% of remaining deformation. Then, superabsorbent sodium acrylate polymer (PNaA) was added to the FPU foam up to 8 pph. The urine absorption capacity of the foam was increased about 24.8% by incorporating 6 pph of PNaA, absorbing 17.46 g of saline solution per foam gram, without any negative impact on the rest of the foam properties. All these properties make the synthesized foams suitable for corporal fluids absorption applications in which elasticity and low-density are required.


Author(s):  
Дмитрий Леонович Кудрявский ◽  
Елена Константиновна Фомина ◽  
Людмила Юльевна Тычинская ◽  
Евгений Доминикович Скаковский ◽  
Светлана Евгеньевна Богушевич

Macromolecular complexes of acrylamide and sodium acrylate copolymer with microelements, including Cu(II), may form at preparation of crop protection and stimulation compositions, where the copolymer serves as an adhesive, water-retaining and film-forming agent. Preparations for crop production may also contain amino acids that protect plants under stressful conditions (cold, dry, etc.). Carboxylic groups of copolymer, carboxylic and amino groups of amino acids may be involved in mixed Cu(II) ions complexes formation. Number of methylene groups separating carboxylic and amino group of amino acids affects its ability to form a stable chelate cycle and, therefore, ligand composition of mixed Cu(II) ions complexes with acrylamide and sodium acrylate copolymer and amino acid. This work is aimed at determining the ligand composition of mixed macromolecular Cu(II) ion complexes with acrylamide and sodium acrylate copolymer and ω-amino acids (β-alanine, γ-aminobutyric acid, ε-aminocaproic acid). 13C and 1H NMR spectroscopy was used to clarify complexes composition. A complex where carboxylic groups of amino acids are ligands has been found to form in aqueous solutions of Cu(II) ions and ω-amino acid (β-alanine, γ-aminobutyric acid, ε-aminocaproic acid) at molar ratio of Cu(II) ions – amino acid equal to 1 : 6. A chelate complex where both carboxylic and amino groups of β-alanine are involved in coordination has been discovered to form in the solution containing Cu(II) ions, β-alanine, as well as acrylamide and sodium acrylate copolymer at molar ratio of Cu(II) – β-alanine – copolymer COO− equal to 1 : 6 : 30. Carboxylic groups of copolymer participate in complex formation as well. Carboxylic groups of both amino acids and the copolymer have been shown to participate in complex formation in aqueous solutions containing Cu(II) ions, either γ-aminobutyric or ε-aminokaproic acid and also acrylamide and sodium acrylate copolymer.


Sign in / Sign up

Export Citation Format

Share Document