Vegetation-Derived Insights on the Mobilization and Potential:Transport of Radionuclides from the Nopal I Natural Analog Site, Mexico

1999 ◽  
Vol 556 ◽  
Author(s):  
Bret W. Leslie ◽  
David A. Pickett ◽  
English C. Pearcy

AbstractThe Nopal I uranium (U) deposit, Peñia Blanca, Mexico is a source term and contaminant transport natural analog to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. In an attempt to characterize the mobilization and potential transport of adionuclides in the unsaturated zone at the Nopal I deposit, vegetation growing on ore piles was analyzed for 238U, 235U, and 232Th decay-series isotopes. Specimens of Phacelia robusta growing on highgrade piles of U ore were collected and analyzed by alpha autoradiography, and by alpha and gamma spectrometry. Activities for U, thorium (Th), and radium (Ra) isotopes (Bq/kg dried plant) were 300, 1000, and 7000 for 238U, 230Th, and 226Ra, respectively. The 226Ra activities in these specimens are among the highest ever measured for plants; furthermore, the plant-to-soil 226Ra concentration ratio is higher than expected. These results demonstrate the large mobility and bio-availability of Ra in the Nopal I environment, and support previous indications of recent loss of 226Ra from the ore body. Comparison between the activities of 238U and 232Th decay-chain Th isotopes in the plants and in the ore substrate indicate that relative mobilization into pore solutions of 228Th > 230Th > 232Th, in a ratio of about 50 – 25:4:1, respectively. The similarity of the plant's 234U/238U activity ratio (˜1.2) to that of a caliche deposit that formed adjacent to the Nopal ore body around 54 ka suggests the 234U/238U activity ratio of U released from the ore is approximately 1.2. The U and 236Ra isotope activities of the plants and ore substrate, and solubility considerations, are used to assess a source term model of the potential Yucca Mountain repository. These results suggest the use of a natural analog source term model in performance assessments may be non-conservative.

1992 ◽  
Vol 294 ◽  
Author(s):  
Bret W. Leslie ◽  
English C. Pearcy ◽  
James D. Prikryl

ABSTRACTThe Nopal I uranium deposit at Pefla Blanca, Mexico is being studied as a natural analog of the proposed high-level nuclear waste repository at Yucca Mountain. Identification of secondary uranium phases at Nopal I, and the sequence of their formation after uraninite oxidation, provides insight into the source term for uranium, and suggests that uranophane may control uranium release and transport in a silicic, tuffaceous, chemically oxidizing, and hydrologically unsaturated environment. Possible constraints on contaminant transport at Nopal I are derived from the spatial distribution of uranium and from measurements of 238U decay-series isotopes. The analyses indicate that flow of U-bearing fluids was influenced strongly by fracture density, but that the flow of these fluids was not restricted to fractures. Gamma spectroscopic measurements of 238U decay-series isotopes indicate secular equilibrium, which suggests undetectable U transport under present conditions.


1991 ◽  
Vol 257 ◽  
Author(s):  
William M. Murphy ◽  
English C. Pearcy

ABSTRACTThe source term for nuclear waste repository performance assessments can be constrained by the solubilities of radioelement-bearing solids and/or the rates of release of radioelements from nuclear waste forms. Both solubility and rate limits for the proposed repository at Yucca Mountain, Nevada, can be assessed using information from the natural analog at PeÑa Blanca, Mexico. Petrographic and field relations indicate that uraninite oxidation and transformation to secondary uranyl silicate minerals have been rapid relative to mass transport of uranium out of the PeÑa Blanca system. The rate limiting process for uranium removal is likely to be advective transport in groundwaters with uranium contents controlled by interactions with uranyl silicate minerals such as uranophane. A maximum limit on the rate of uraninite oxidation at PeÑa Blanca is calculated to be 0.032 tons of UO2 per year using geologic constraints on the amount of oxidation and the available time.


2004 ◽  
Vol 824 ◽  
Author(s):  
Lietai Yang ◽  
Miriam R. Juckett ◽  
Roberto T. Pabalan

AbstractThe electrical conductance or conductivity of three salt mixtures, Na-K-Cl-NO3, Ca-K-Cl and Ca-Na-Cl, were measured at 25, 50 and 70°C [77, 122, and 158 °F] as a function of relative humidity (RH). Mutual deliquescence and efflorescence RH (MDRH and MERH) values were determined based on the conductivity measurements. It was found that the conductivity of the three salt mixtures started to increase at RH values that are approximately 40 % of their MDRH and increased by 1to 2 orders of magnitude just before reaching the MDRH. At the MDRH, a significant increase in conductivity was observed. The MDRH and MERH for the Ca-K-Cl and Ca-Na-Cl mixtures were found to be approximately 15 % in the temperature range of 50 to 70 °C [122 to 158 °F]. The MDRH and MERH for the Na-K-Cl-NO3system were found to be approximately 54 % at 50 °C [122 °F] and decreased significantly with an increase in temperature.


1995 ◽  
Vol 412 ◽  
Author(s):  
A. V. Wolfsberg ◽  
B. A. Robinson ◽  
J. T. Fabryka-Martin

AbstractCharacterization and performance assessment (PA) studies for the potential high-level nuclear waste repository at Yucca Mountain require an understanding of migration mechanisms and pathways of radioactive solutes. Measurements of 36C1 in samples extracted from boreholes at the site are being used in conjunction with recent infiltration estimates to calibrate a site-scale flow and solute transport model. This exercise using the flow and solute transport model, FEHM, involves testing different model formulations and two different hypotheses to explain the occurrence of elevated 36Cl in the Calico Hills unit (CHn) which indicates younger water than in the overlying Topopah Spring unit (TSw). One hypothesis suggests fast vertical transport from the surface via fractures in the TSw to the CHn. An alternative hypothesis is that the elevated 36C1 concentrations reflect rapid horizontal flow in the CHn or at the interface between the CHn and the TSw with the source being vertical percolation under spatially isolated regions of high infiltration or at outcrops of those units. Arguments in favor of and against the hypotheses are described in conjunction with the site-scale transport studies.


1996 ◽  
Vol 465 ◽  
Author(s):  
E. G. Woodhouse ◽  
R. L. Bassett

ABSTRACTPerched water zones have been identified in the fractured, welded tuff in the semi-arid to arid environments of Yucca Mountain, Nevada and near Superior, Arizona. An understanding of the formation of such zones is necessary in order to predict where future perched water might form at Yucca Mountain, the proposed site of a high-level nuclear waste repository. The formation or growth of a perched zone near a repository is one of the factors to be considered in the risk assessment of the Yucca Mountain site.The Apache Leap Research Site near Superior, Arizona is a natural analog to the Yucca Mountain site in terms of geology, hydrology, and climate. Information used to study possible mechanisms for the formation of the perched zone included data regarding isotopie and geochemical properties of the waters in and above the perched water zone; measured hydrologie parameters of the perched zone; geophysical and measured parameters of the tuff; megascopic and microscopic observations of the tuff, including mineralogical, alteration, and structural features; and the lateral and vertical extent of perched water in the region.Aquifer test, geophysical, geochemical, and radioisotopic data show that fractures are the means by which water is recharging the perched zone. The reduced hydraulic conductivity of the formation in the perched zone appears to result from both a severe reduction in matrix porosity and permeability caused by welding, devitrification, and vapor phase crystallization; and by an increase in fracture filling which restricts the pathways for flow.


1992 ◽  
Vol 82 (1) ◽  
pp. 164-174
Author(s):  
James N. Brune ◽  
Walter Nicks ◽  
Arturo Aburto

Abstract We operated a microearthquake array in the neighborhood of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The array consists of four high-gain (up to 34 million), narrow band (25 Hz) telemetered stations. Based on approximate magnitude calibration of the array we expect during quiet periods, for distances less than 15 km, complete recording of events at Yucca Mt. for M ≧ −1. We have operated the four stations for 12-hour periods overnight between August and October 1990 and intermittently afterward, until April 1991, when we began more or less continuous operation. The pattern of microearthquake activity confirms the existence of a zone of seismic quiescence in the vicinity of proposed repository. We recorded only about 10 events with S-P times of less than 3 sec (D < 24 km). Most events had S-P times between 3 and 6.5 sec, consistent with the higher seismic activity at distances between 24 and 52 km observed by Rogers et al. (1987) and Gomberg (1991). Oliver et al. (1966) found, contrary to what has been observed by us for Yucca Mountain, that in seismically active areas most of the events had S-P times of less than 3 sec. We confirmed this expectation for four microearthquake stations near Mammoth Lakes, where we observed microearthquake rates of over 100 per day, most with S-P times of less than 3 sec. Extrapolation of seismicity data from the Southern Great Basin Seismic Network confirms the low microearthquake activity in the immediate vicinity of Yucca Mountain.


Author(s):  
George J. Saulnier ◽  
K. Patrick Lee ◽  
Donald A. Kalinich ◽  
S. David Sevougian ◽  
Jerry A. McNeish

The total-system performance assessment (TSPA) model for the final environmental impact statement (FEIS) for the potential high-level nuclear-waste repository at Yucca Mountain, Nevada was developed from a series of analyses and model studies of the Yucca Mountain site. The U.S. Department of Energy (DOE) has recommended the Yucca Mountain, Nevada site for the potential development of a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. In May 2001, the DOE released the Yucca Mountain Science and Engineering Report (S&ER) for public review and comment. The S&ER summarizes more than 20 years of scientific and engineering studies supporting the site recommendation (SR). Following internal reviews of the S&ER and other documents, the DOE performed supplemental analyses of uncertainty in support of the SR as summarized in the Supplemental Science and Performance Analysis (SSPA) reports [2, 3]. The SSPA (1) provided insights into the impact of new scientific data and improved models and (2) evaluated a range of thermal operating modes and their effect on the predicted performance of a potential repository. The various updated component models for the SSPA resulted in a modified TSPA model, referred to as the supplemental TSPA model or SSPA TSPA model capturing the combined effects of the alternative model representations on system performance. The SSPA TSPA model was the basis for analyses for the FEIS for the Yucca Mountain site. However, after completion of the SSPA, the U.S. Environmental Protection Agency (EPA) released its final radiation-protection standards for the potential repository at Yucca Mountain (40 CFR Part 197). Compliance with the regulation required modification of several of the component models (e.g., the biosphere transport model and the saturated-zone transport model) in order to evaluate repository performance against the new standards. These changes were incorporated into the SSPA TSPA model. The resulting FEIS TSPA model, known as the “integrated TSPA model,” was used to perform the calculations presented in this report. The results of calculations using the FEIS TSPA model under a non-disruptive scenario, show that the potential disposal of commercial and DOE waste at a Yucca Mountain repository would not produce releases to the environment that would exceed the regulatory standards promulgated in the EPA Final Rule 10 CFR 197 and the NRC Final Rule 10 CFR 63 for both individual protection and groundwater protection. The analyses also show that both the high and low-temperature operating modes result in similar mean annual dose to the reasonably maximally exposed individual (RMEI). Further, the analyses show that consideration of intrusive and extrusive igneous events, human intrusion, or inclusion of the potential inventory of all radioactive material in the commercial and DOE inventory would not exceed those published standards.


Sign in / Sign up

Export Citation Format

Share Document