In-Situ Characterisation of Precipitation in AI-Cu thin films

1999 ◽  
Vol 562 ◽  
Author(s):  
J. P. Lokker ◽  
A. J. Bottger ◽  
G. C. A. M. Janssen ◽  
S. Radelaar

ABSTRACTThe precipitate formation occurring in Al-Cu thin foils with copper concentrations of either 1.15 at.% or 0.3 at.%, has been studied. In-situ X-ray diffraction analysis and differential scanning calorimetry are applied to determine the phases formed and the enthalpy changes in the same samples. Both X-ray diffraction and differential scanning calorimetry indicate that the precipitation behaviour of thin films (about 500 nm thickness) differs significantly from that of bulk material. In the films studied the precipitation of Al2Cu occurs at a much lower temperature than expected on the basis of the (bulk) phase diagram. Moreover, no intermediate phases are observed prior to Al2Cu precipitation. Also the amount of Cu in solid solution (0.20 at%Cu) observed by electron-probe micro-analysis after slowly cooling from 500°C to room temperature, exceeds the solubility of bulk Al-Cu.

1999 ◽  
Vol 564 ◽  
Author(s):  
J. P. Lokker ◽  
A. J. Bottger ◽  
G. C. A. M. Janssen ◽  
S. Radelaar

AbstractThe precipitate formation occurring in Al-Cu thin foils with copper concentrations of either 1.15 at.% or 0.3 at.%, has been studied. In-situ X-ray diffraction analysis and differential scanning calorimetry are applied to determine the phases formed and the enthalpy changes in the same samples. Both X-ray diffraction and differential scanning calorimetry indicate that the precipitation behaviour of thin films (about 500 nm thickness) differs significantly from that of bulk material. In the films studied the precipitation of Al2Cu occurs at a much lower temperature than expected on the basis of the (bulk) phase diagram. Moreover, no intermediate phases are observed prior to Al2Cu precipitation. Also the amount of Cu in solid solution (0.20 at%Cu) observed by electron-probe micro-analysis after slowly cooling from 500°C to room temperature, exceeds the solubility of bulk Al-Cu.


CrystEngComm ◽  
2018 ◽  
Vol 20 (22) ◽  
pp. 3105-3116 ◽  
Author(s):  
Roman Svoboda ◽  
Roman Bulánek ◽  
Dušan Galusek ◽  
Roghayeh Hadidimasouleh ◽  
Yadolah Ganjkhanlou

Differential scanning calorimetry and in situ X-ray diffraction analysis were used to study the products and mechanism of crystal formation in VOx–ZrO2 ceramics.


1983 ◽  
Vol 38 (12) ◽  
pp. 1362-1364 ◽  
Author(s):  
I. H. Ibrahim ◽  
W. Haase

Abstract Three mesogenic compounds of the general formula have been investigated by differential scanning calorimetry. thermal optical microscopy and X-ray diffraction methods/Enthalpy changes of The different phase transitions for these compounds have been determined. H33 exhibits smectic B and nematic phases, whereas H34 and H75 exhibit only smectic B phases. The thickness of the smectic layers and the average intermolecular distance have been evaluated, as well as the corresponding molecular parameters in the nematic phase.


2011 ◽  
Vol 172-174 ◽  
pp. 646-651 ◽  
Author(s):  
Gamra Tellouche ◽  
Khalid Hoummada ◽  
Dominique Mangelinck ◽  
Ivan Blum

The phase formation sequence of Ni silicide for different thicknesses is studied by in situ X ray diffraction and differential scanning calorimetry measurements. The formation of a transient phase is observed during the formation of δ-Ni2Si; transient phases grow and disappear during the growth of another phase. A possible mechanism is proposed for the transient phase formation and consumption. It is applied to the growth and consumption of θ-Ni2Si. A good accordance is found between the proposed model and in situ measurement of the kinetics of phase formation obtained by x-ray diffraction and differential scanning calorimetry for higher thickness.


1991 ◽  
Vol 69 (12) ◽  
pp. 863-867 ◽  
Author(s):  
D. A. Mannock ◽  
R. N. McElhaney

We have investigated the physical properties of a homologous series of synthetic, saturated 1,2-di-O-acyl-3-O-(β-D-galactopyranosyl)-sn-glycerols using calorimetry and X-ray diffraction. Unannealed aqueous dispersions of these compounds exhibit a lower temperature, moderately energetic, chain-melting (Lβ/Lα phase transition and a higher temperature, weakly energetic, bilayer/nonbilayer phase transition. On annealing below the Lβ/Lα phase transition, the Lβ phase converts to an LC phase, which may undergo a highly energetic LC/Lα or LC/HII phase transition at very high temperatures on reheating. The temperatures of these phase transitions are higher than those seen in the corresponding α- and β-D-glucosyl diacylglycerols. However, the Lβ/Lα and bilayer/nonbilayer phase transition temperatures of the β-D-galactosyl diacylglycerols are lower than those of the corresponding diacyl phosphatidylethanolamines. These observations are discussed in terms of the hydration and hydrogen bonding properties of their respective headgroups.Key words: differential scanning calorimetry, low-angle x-ray diffraction, glycolipids, galactolipids, lipid phase behaviour.


1998 ◽  
Vol 13 (5) ◽  
pp. 1177-1185 ◽  
Author(s):  
Aszetta Jordan ◽  
Zhentong Liu ◽  
Oswald N. C. Uwakweh

Homogeneous or uniform crystalline materials are obtained following the ball milling of pure elemental powders of Fe and Zn in proportions to yield single phases Γ(Fe3Zn10), Γ1(Fe5Zn21), and Γ + Γ1 mixed phase (Fe25Zn75). Differential scanning calorimetry (DSC) measurements of the as-milled materials show characteristic stages in the temperature range of 50–600 °C prior to establishing stable equilibrium. The activation energies determined from kinetic analyses range from 49 to 189 kJ/mole in these materials. A characteristic stage at 130 °C marking the distinct evolution of the Γ and Γ1 phases from the intermediate or mixed phase composition is identified from XRD measurements. The identification of a unique Fe site with a quadrupole splitting (QS) of 1.5 mm/s in corroboration with x-ray diffraction (XRD) shows that this stage marks the onset of an in situ transformation prior to the distinct evolution of the homogeneous phases. The Mössbauer effect measurement of the as-milled materials are resolved in terms of four unique Fe sites with QS of 1.1, 0.241, 0.073, and 0.0772 mm/s.


2014 ◽  
Vol 588 ◽  
pp. 254-258 ◽  
Author(s):  
Rachmat Adhi Wibowo ◽  
Stefan Moeckel ◽  
Hyesun Yoo ◽  
Astrid Hoelzing ◽  
Rainer Hock ◽  
...  

Solar Energy ◽  
2017 ◽  
Vol 153 ◽  
pp. 11-24 ◽  
Author(s):  
Danny Müller ◽  
Christian Knoll ◽  
Werner Artner ◽  
Michael Harasek ◽  
Christian Gierl-Mayer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document