Low-Field Electron Emission Properties from Intrinsic and S-Incorporated Nanocrystalline Carbon Thin Films Grown by Hot- Filament CVD

2000 ◽  
Vol 638 ◽  
Author(s):  
S. Gupta ◽  
B. R. Weiner ◽  
B. L. Weiss ◽  
G. Morell ◽  
Kenyetta Johnson ◽  
...  

AbstractResults are reported on the electron field emission properties of intrinsic and S- incorporated nanocrystalline carbon (n-C:S) thin films grown on molybdenum substrates by hotfilament CVD technique from methane-hydrogen (CH4/H2) and hydrogen sulphide-hydrogen (H2S/H2) gas pre mixtures respectively. The field emission properties for the S-incorporated films were investigated as a function of substrate temperature (TS). Lowest turn-on field was observed at 4.5 V/μm for one of the sample, which was grown at 900 °C, demonstrating the effect of sulfur addition. The S-incorporation also causes microstructural and structural changes, as characterized with ex situ techniques such as SEM, AFM and Raman spectroscopy (RS). Sassisted films show smoother surfaces and finer-grained than those grown without it. The electron field emission properties of S-assisted films is also compared to the film grown without it (intrinsic) at a particular deposition temperature and the turn-on field was found to be almost half for the S-assisted film than for the non S-assisted film. The influence of growth temperature was also conducted and an inverse correlation was found with the turn-on field (Ec). These studies were performed in order attempt to “tailor-the-material” as a viable cold cathode material by introducing the defecTS and altering the electronic structure.

2005 ◽  
Vol 86 (23) ◽  
pp. 232102 ◽  
Author(s):  
C. H. P. Poa ◽  
S. R. P. Silva ◽  
R. G. Lacerda ◽  
G. A. J. Amaratunga ◽  
W. I. Milne ◽  
...  

2001 ◽  
Vol 675 ◽  
Author(s):  
S. Gupta ◽  
B. R. Weiner ◽  
B. L. Weiss ◽  
G. Morell

ABSTRACTThe electron field emission properties of sulfur-assisted nanocrystalline carbon (n-C: S) thin films grown on molybdenum substrates by hot-filament CVD technique using methane-hydrogen (CH4/H2) and hydrogen sulfide-hydrogen (H2S/H2) gas mixtures were investigated. The field emission properties of the S-assisted films are reported as a function of sulfur concentration. The incorporation of S caused structural and microstructural changes that were characterized with SEM, AFM and Raman spectroscopy (RS). The S-assisted films show smoother surfaces and smaller grains than those grown without. The lowest turn-on field measured was around 4.5 – 5.0 V/μm films grown with 500 ppm of hydrogen sulfide and at 900 °C. The electron field emission properties of S-assisted films were also compared to those grown without sulfur (i.e., intrinsic). An inverse correlation between the threshold field (Ec) and sulfur concentration was found. These finding are attributed to defect induced states within the electronic band structure.


1999 ◽  
Vol 585 ◽  
Author(s):  
L. L. Cheng ◽  
Y H. Yu ◽  
B. Sundaravel ◽  
E. Z. Luo ◽  
S. Lin ◽  
...  

AbstractAluminum Nitride (AIN) is a promising material for a variety of technological applications because it has many exceptional properties, such as wide band gap (WBG) and negative electron affinity (NEA). AIN thin films were prepared by Reactive Ion Beam Coating. The properties of the AIN thin films may be a function of one of the preparation conditions: the beam energy. We used the non-Rutherford backscattering (non-RBS) and Auger Electron Spectroscopy (AES) results to analyze the composition of the AIN thin films. Atomic Force Microscopy (AFM) was applied to study the morphology of films. On the other hand, electron field emission properties were also studied to find the relationship between the compositional, morphological and electron field emission properties of the AIN thin films.


Carbon ◽  
2003 ◽  
Vol 41 (6) ◽  
pp. 1143-1148 ◽  
Author(s):  
X.W. Liu ◽  
L.H. Chan ◽  
W.J. Hsieh ◽  
J.H. Lin ◽  
H.C. Shih

2003 ◽  
Vol 18 (11) ◽  
pp. 2708-2716 ◽  
Author(s):  
S. Gupta ◽  
B.R. Weiner ◽  
G. Morell

Results are reported on the electron field emission properties of microcrystalline diamond thin films grown on molybdenum substrates by the sulfur (S)-assisted hot-filament chemical vapor deposition technique using methane (CH4), hydrogen sulfide (H2S), and hydrogen (H2) gas mixtures. Electron field-emission measurements revealed that the S-incorporated microcrystalline diamond thin films have substantially lower turn-on fields and steep rising currents as compared to those grown without sulfur. The field-emission properties for the S-incorporated films were also investigated systematically as a function of substrate temperature (TS). Lowest turn-on field achieved was observed at around 12.5 V/μm for the samples grown at TS of 700°C with 500 ppm H2S. To establish the property-structure correlation, we analyzed the films with multiple characterizations include scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy (RS), and x-ray photoelectron spectroscopy (XPS) techniques. It was found that sulfur addition causes significant microstructural changes in microcrystalline diamond thin films. S-assisted films show smoother, coarse-grained surfaces (non-faceted) than those grown without it (well-faceted) and a relatively higher content of non-diamond carbon (primarily sp2-bonded C). RS and investigations on the morphology by SEM and AFM indicated the increase of sp2 C content with increasing TS followed by a morphological transition at 700°C in the films. XPS investigations also showed the incorporation of S in the films up to a few atomic layers. It is believed that the electron-emission properties are governed by the sulfur incorporation during the chemical vapor deposition process. Although most of the S is expected to be electrically inactive, under the high doping conditions hereby used, it is shown rather indirectly through multiple characterizations that there may be some amount of S in donor states. Therefore the results are discussed in terms of the dual role of S whereby it induces the structural defects in the form of enhanced sp2 C content at the expense of diamond quality and a possibility of availability of conduction electrons. In fact the latter finding is supported through room temperature electrical conductivity measurements.


Sign in / Sign up

Export Citation Format

Share Document