Chemical Changes Occurring During the Early Hydration of PFA-OPC Mixtures

1985 ◽  
Vol 65 ◽  
Author(s):  
K. Luke ◽  
F. P. Glasser

ABSTRACTThe course of the initial set reactions of Portland cement-PFA blends is markedly influenced by the presence of fly ash. Data are presented on the effect of two Class F PFA materials blended with cement in 30:70 ratio. Selected analyses of the aqueous phase compositions at lh to 336h are presented. During the first 6h a nearly steady state aqueous phase composition is achieved with respect to Na, K and Ca concentrations. Following a renewed burst of hydration activity, Ca decreases rapidly in the interval 6–24 h while Na and K contents rise more gradually.

2007 ◽  
Vol 72 (6) ◽  
pp. 591-604 ◽  
Author(s):  
Gordana Stefanovic ◽  
Ljubica Cojbasic ◽  
Zivko Sekulic ◽  
Srdjan Matijasevic

Fly ash (FA) can be used in cement mixtures with certain limitations. The problem of the mentioned mixtures lies in the insufficient activity of the particles of FA in the reactions which are important for the establishment of the mechanical characteristics of cement. This is particularly true for the hydration reactions. As a result of this, cement pastes formed by mixing ash and clinker have worse characteristics compared to those of pure Portland cement (PC), especially in the early period of setting. As is well known, FA can be a good solution for the neutralization of the negative effects generated due to the creation of free Ca(OH)2 during the hydration of PC, provided that the problems with the low activity of FAare overcome. For the experiments in this study, a mixture of Portland cement and fly ash was used, the content of ash in the mixture being 30 % and 50 %. Mechanical activation was performed in a vibrating ring mill. The goal of this study was to demonstrate, through experimental results, that during the mechanical activation of a PC and FA mixture, the components in the mixture which mostly affect the direction, rate and range of hydration reactions occurring in the mixture had been activated. The values of the compressive strength of the activated and non-activated mixtures and the changes of their specific surface area proved that during the grinding process, the mixture PC+FA had been mechanically activated. The highest increase of compressive strength was achieved in the early period of setting, which indicates an improvement in the early hydration of the mixture. XRD, DTA and TG analyses showed that the alite (C3S) and belite (C2S) from the PC and a part of the fly ash were activated. .


1984 ◽  
Vol 43 ◽  
Author(s):  
Michael W. Grutzeck ◽  
Wei Fajun ◽  
Della M. Roy

AbstractThe hydration of high-calcium and low-calcium fly ash-cementmixtures was investigated to determine the effect of fly ash upon the hydration of a Type I portland cement, and to determine the associated mechanisms of hydration. When blended with portland cement, both fly ashes retarded the early hydration process, the high-Ca more so than the low-Ca. Analyses of solution compositions and calorimetric (heat of hydration) measurements were made. The retardation and hydration effects are discussed in terms of solution composition data and solid phase characterization. The hydration effects were interpreted and compared with the results of previous work.


Author(s):  
Hassan Rashidian-Dezfouli ◽  
Prasada Rao Rangaraju

Millions of tons of fiberglass are produced annually for a variety of applications. Because of stringent quality requirements and operational characteristics of the manufacturing plants, a significant quantity of fiberglass that does not meet required specifications of the industry ends up as waste in landfills. This study investigated the use of ground glass fiber (GGF) that had been discarded by plants because it did not meet prescribed standards, as a supplementary cementitious material (SCM) for portland cement. Three replacement levels (10%, 20%, and 30% by mass) for portland cement in paste, mortar, and concrete mixtures were studied. Mechanical and durability properties of the mixtures were compared with two control mixtures: a mixture made up of 100% portland cement and a mixture with 25% Class F fly ash as a cement replacement material. It was observed in these studies that even though replacement of portland cement with GGF did not lead to any significant changes in the mechanical behavior of hardened concrete, there were significant improvements in durability properties at replacement levels up to as high as 20%. The use of GGF was found to improve significantly the resistance of mortar mixtures to alkali–silica reaction and sulfate attack. In addition, the use of GGF as an SCM significantly reduced the chloride ion permeability of concrete. Results of this study show that using GGF as an SCM can result in a better durability performance compared with a mixture with a similar level of Class F fly ash.


Sign in / Sign up

Export Citation Format

Share Document