Atomic Force Microscopy Studies of Fracture Surfaces From Oxide / Polymer Interfaces

2000 ◽  
Vol 654 ◽  
Author(s):  
Maura Jenkins ◽  
Jeffrey Snodgrass ◽  
Aaron Chesterman ◽  
Reinhold H. Dauskardt ◽  
John C. Bravman

AbstractAtomic Force Microscopy (AFM) is used to characterize fracture surfaces in silicon oxide / silane adhesion promoter / BCB polymer systems. Fatigue striations were found on some samples, and these were correlated with the crack growth rate per fatigue cycle. X-ray Photoelectron Spectroscopy (XPS) was used to identify the species present on each surface, and it was found that striations only form when the fracture path is through the polymer.

2010 ◽  
Vol 159 ◽  
pp. 101-104
Author(s):  
Emil Manolov ◽  
Mario Curiel ◽  
Nicola Nedev ◽  
Diana Nesheva ◽  
Juan Terrazas ◽  
...  

Thin SiOx films deposited by reactive r.f. magnetron sputtering of Si at partial pressure ratios R between oxygen and argon in the range 15%-0.03% are studied. X-ray photoelectron spectroscopy and Variable angle spectroscopic ellipsometry prove enrichment with Si of the layers deposited at R < 0.5 %. Ellipsometric data give information about the refractive index and extinction coefficient of the films. Atomic Force Microscopy results show that for all samples high temperature annealing at 1000oC leads to a decrease of the surface roughness.


2018 ◽  
Vol 51 (2) ◽  
pp. 246-253
Author(s):  
Dev Raj Chopra ◽  
Justin Seth Pearson ◽  
Darius Durant ◽  
Ritesh Bhakta ◽  
Anil R. Chourasia

2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


2003 ◽  
Vol 82 (12) ◽  
pp. 1830-1832 ◽  
Author(s):  
H. Dumont ◽  
D. Rutzinger ◽  
C. Vincent ◽  
J. Dazord ◽  
Y. Monteil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document