Quantum-dot Cellular Automata

2001 ◽  
Vol 696 ◽  
Author(s):  
Gregory L. Snider ◽  
Alexei O. Orlov ◽  
Ravi K. Kummamuru ◽  
Rajagopal Ramasubramaniam ◽  
Islamshah Amlani ◽  
...  

AbstractAn overview is given of the quantum-dot cellular automata (QCA) architecture, along with a summary of experimental demonstrations of QCA devices. QCA is a transistorless computation paradigm that can provide a solution to such challenging issues as device and power density. The basic building blocks of the QCA architecture, such as AND, OR gates and clocked cells have been demonstrated and will be presented here. The quantum dots used in the experiments to date are metal islands that are coupled by capacitors and tunnel junctions, and devices operate only at very low temperatures. For QCA to be used in practical devices, the operating temperature must be raised, and issues such as background charge must be addressed. An introduction will be given to these issues and possible solutions.

1997 ◽  
Vol 07 (10) ◽  
pp. 2199-2218 ◽  
Author(s):  
Wolfgang Porod

We discuss novel nanoelectronic architecture paradigms based on cells composed of coupled quantum-dots. Boolean logic functions may be implemented in specific arrays of cells representing binary information, the so-called Quantum-Dot Cellular Automata (QCA). Cells may also be viewed as carrying analog information and we outline a network-theoretic description of such Quantum-Dot Nonlinear Networks (Q-CNN). In addition, we discuss possible realizations of these structures in a variety of semiconductor systems (including GaAs/AlGaAs, Si/SiGe, and Si/SiO 2), rings of metallic tunnel junctions, and candidates for molecular implementations.


2019 ◽  
Vol 8 (S3) ◽  
pp. 19-24
Author(s):  
Singathala Guru Viswadha

CMOS technology is one of the most popular technology in the computer chip design industry and broadly used today to form integrated circuits in numerous and varied applications and it has transformed the field of electronics. Over the time the design methodologies and processing technologies of CMOS devices have greatest activity with the Moore’s law. Now CMOS technology has to face challenges to survive through the submicron ranges. The scaling in CMOS has reached higher limit, not only from technological and Physical point of view but also from economical and material aspects. This concept inspires the researches to look for new alternatives to CMOS which gives better performance and power consumption. One of the alternative technologies to digital designing in CMOS is the Quantum dot Cellular Automata (QCA). QCA is a technology it works on Electronic interaction between the cells. The QCA cell basically consists of Quantum dots separated by certain distance. The transmission of information done via the interaction between the Electrons present in these quantum dots. In this paper the limitations to CMOS in submicron range and concepts for designing in QCA have been discussed and also the building blocks are explained using QCA designer implementations with focus on cell interaction and clocking mechanism.


2010 ◽  
Vol 19 (02) ◽  
pp. 349-365 ◽  
Author(s):  
VASILIOS A. MARDIRIS ◽  
IOANNIS G. KARAFYLLIDIS

Multiplexers are extremely important parts of signal control systems. Some critical circuits of computing systems, like memories, use large multiplexers in order to present the value of a specific memory cell to their output. Several quantum-dot cellular automata (QCA) circuits have been designed and the need for a QCA memory access system becomes prominent. A modular 2n to 1 QCA multiplexer covering small area could reduce the size of such circuits and conclusively could increase circuit integration. In this paper we present a novel design of a small size, modular quantum-dot cellular automata (QCA) 2n to 1 multiplexer that can be used for memory addressing. The design objective is to develop a modular design methodology which can be used to implement 2n to 1 multiplexers using building blocks. For the QCA implementation a careful consideration is taken into account concerning the design in order to increase the circuit stability.


1999 ◽  
Vol 86 (5) ◽  
pp. 549-590 ◽  
Author(s):  
WOLFGANG POROD ◽  
CRAIGS LENT ◽  
GARY H. BERNSTEIN ◽  
ALEXEI O. ORLOV ◽  
ISLAMSHA HAMLANI ◽  
...  

Author(s):  
Esam AlKaldy ◽  
Ali H Majeed ◽  
Mohd Shamian Zainal ◽  
Danial MD Nor

<p>Quantum-dot Cellular Automata (QCA) is one of the most important computing technologies for the future and will be the alternative candidate for current CMOS technology. QCA is attracting a lot of researchers due to many features such as high speed, small size, and low power consumption. QCA has two main building blocks (majority gate and inverter) used for design any Boolean function. QCA also has an inherent capability that used to design many important gates such as XOR and Multiplexer in optimal form without following any Boolean function. This paper presents a novel design 2:1 QCA-Multiplexer in two forms. The proposed design is very simple, highly efficient and can be used to produce many logical functions. The proposed design output comes from the inherent capabilities of quantum technology. New 4:1 QCA-Multiplexer has been built using the proposed structure. The output waveforms showed the wonderful performance of the proposed design in terms of the number of cells, area, and latency.</p>


2003 ◽  
Vol 34 (3-6) ◽  
pp. 195-203 ◽  
Author(s):  
C.G Smith ◽  
S Gardelis ◽  
A.W Rushforth ◽  
R Crook ◽  
J Cooper ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 10611-10619

Quantum dot Cellular Automata (QCA) is the alternative technology to the classic CMOS technology since it is going to attain a road block in reducing power consumption and increase speed of the digital circuits. Circuit switching network is the basic component in order to transmit input signal among the different users within the communication network. A novel crossbar switch is proposed in this paper to design this communication network. The basic building blocks of the proposed circuit Switching network are Crossbar switch, Multiplexer and Demultiplexer. Multilayer QCA cells are almost impossible when compared to the fabrication feasibility of the single layer design. So this design is achieved in single layer.Circuit switching network is designed and compared with existing one using QCA Designer2.0.3.The designs are verified through matching up with truth tables.


2017 ◽  
Vol 49 ◽  
pp. 202-214
Author(s):  
Debarati Dey ◽  
Pradipta Roy ◽  
Debashis De

Molecular Quantum-dot Cellular Automata is the most promising and challenging technology nowadays for its high operating frequency, extremely high device density and non-cryogenic working temperature. In this paper, we report a First Principle approach based on analytical model of 3-dot Bio Molecular Quantum-dot Cellular Automata. The device is 19.62Å long and this bio molecular Quantum dot Cell has been made with two Adenine Nucleotide bio-molecules along with one Carbazole and one Thiol group. This whole molecular structure is supported onto Gold substrate. In this paper, two Adenine Nucleotides act as two quantum dots and Carbazole acts as another dot. These 3-Quantum-dots are mounted in a tree like structure supported with Thiol group. This model has been demonstrated with Extended Hückel Theory based semi-empirical method. The quantum ballistic transmission and HOMO-LUMO plot support the polarization state change. This state changing ability has been observed for this molecular device. Therefore, this property has been investigated and reported in this paper. HOMO-LUMO plot shows the two logic states along with null state for this 3-dots system. This phenomenon illustrates how the charge transfers take place. Two polarization states along with one additional null state have been obtained for this bio molecular nano device. This molecular device has been operated with 1000THz frequency. This nanoscale design approach will initiate one step towards the modeling of high frequency bio molecular Quantum dot Cell at room temperature.


Sign in / Sign up

Export Citation Format

Share Document