Preparation and Microstructure Control of Protein Thin Films Deposited by Pulsed Laser Deposition and Via Colloid Chemical Routes

2003 ◽  
Vol 788 ◽  
Author(s):  
Sayuri Nakayama ◽  
Ichiro Taketani ◽  
Sanshiro Nagare ◽  
Mamoru Senna

ABSTRACTProtein thin film (mainly silk fibroin) was prepared by pulsed laser deposition (PLD) with 1064nm IR-beam and via colloid chemical routes. Thickness, surface roughness, and microstructures of the deposited film were examined by quartz crystal microbalance sensor, field emission scanning electron microscope (FE-SEM), and atomic force microscope (AFM). The laser power density was varied systematically for PLD to control the microstructures of the film and the secondary structure (β-sheet, α-helix, or random coil) of the protein. Secondary structure of the target and film was examined by FT-IR. Films prepared by PLD comprise by agglomerated particles with their primary particle size around 30nm. The size of the primary particles was uniform, especially for the film prepared at low laser power density. At low laser power density, proportion of β-sheet increased and that of random coil decreased. Proportion of random coil was also increased by the wet colloidal process. PLD with low power density is most suitable to preserve the secondary structure in the protein thin film.

1996 ◽  
Vol 438 ◽  
Author(s):  
Peidong Yang ◽  
Z. John Zhang ◽  
Jiangtao Hu ◽  
Charles M. Lieber

AbstractThin films of diamond-like carbon have been grown by pulsed laser deposition using a Nd:YAG laser at 532 nm. Time-of-flight mass spectroscopy was used to investigate the effects of laser power density and background gas pressure on the plume characteristics including the species in the plume and the kinetic energy distribution of each species. We found that with increasing laser power density (1) the relative amount of C+ ions increases, (2) the kinetic energy distributions of C+ get broader and can be deconvoluted into fast and slow components, and (3) the kinetic energy of the fast component of C+ ions increases from several to 40 eV. The resistivity and the local carbon bonding in films grown under these same conditions were also characterized. It was found that there is direct correlation between the characteristics of fast part of C+ ions in the plume and the diamond-like properties of the thin films. Under optimal growth conditions diamond-like carbon films with a large fraction of sp3 bonding can be prepared, although the maximum fraction appears to saturate at 70%. The implications of these results are discussed.


2004 ◽  
Vol 849 ◽  
Author(s):  
J. Sagawa ◽  
S. Nagare ◽  
M. Senna

ABSTRACTProtein (bovine serum albumin; BSA)-drug (indomethacin; IM) nanocomposites were prepared by pulsed laser deposition (PLD) at two wavelengths, infrared (1064nm) and ultraviolet (266nm), from uniformly dispersed mixture of BSA and IM as a target. Composite particulates under 50nm were obtained with the coexistence of larger agglomerates over 200nm. Primary structure of BSA is preserved after laser irradiation by both wavelengths. Effects of electronic and vibrational excitation by UV and IR laser respectively on the secondary structure of the nanocomposites were examined by Fourier transform infrared spectroscopy (FT-IR). Chemical shift towards lower wavenumber and a broadening of the amide I band due to PLD treatment were observed by FT-IR. From curve fitting of the amide I into five components, we found the decrease in the ratio of α-helical / β-sheet components with increasing the laser fluence. The secondary structure of BSA is more sensitive to the laser fluence than the wavelength.


2000 ◽  
Vol 76 (18) ◽  
pp. 2490-2492 ◽  
Author(s):  
P. A. Atanasov ◽  
R. I. Tomov ◽  
J. Perriére ◽  
R. W. Eason ◽  
N. Vainos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document