Pulsed Laser Deposition of Diamond-Like Carbon Thin Films: Ablation Dynamics and Growth

1996 ◽  
Vol 438 ◽  
Author(s):  
Peidong Yang ◽  
Z. John Zhang ◽  
Jiangtao Hu ◽  
Charles M. Lieber

AbstractThin films of diamond-like carbon have been grown by pulsed laser deposition using a Nd:YAG laser at 532 nm. Time-of-flight mass spectroscopy was used to investigate the effects of laser power density and background gas pressure on the plume characteristics including the species in the plume and the kinetic energy distribution of each species. We found that with increasing laser power density (1) the relative amount of C+ ions increases, (2) the kinetic energy distributions of C+ get broader and can be deconvoluted into fast and slow components, and (3) the kinetic energy of the fast component of C+ ions increases from several to 40 eV. The resistivity and the local carbon bonding in films grown under these same conditions were also characterized. It was found that there is direct correlation between the characteristics of fast part of C+ ions in the plume and the diamond-like properties of the thin films. Under optimal growth conditions diamond-like carbon films with a large fraction of sp3 bonding can be prepared, although the maximum fraction appears to saturate at 70%. The implications of these results are discussed.

2003 ◽  
Vol 788 ◽  
Author(s):  
Sayuri Nakayama ◽  
Ichiro Taketani ◽  
Sanshiro Nagare ◽  
Mamoru Senna

ABSTRACTProtein thin film (mainly silk fibroin) was prepared by pulsed laser deposition (PLD) with 1064nm IR-beam and via colloid chemical routes. Thickness, surface roughness, and microstructures of the deposited film were examined by quartz crystal microbalance sensor, field emission scanning electron microscope (FE-SEM), and atomic force microscope (AFM). The laser power density was varied systematically for PLD to control the microstructures of the film and the secondary structure (β-sheet, α-helix, or random coil) of the protein. Secondary structure of the target and film was examined by FT-IR. Films prepared by PLD comprise by agglomerated particles with their primary particle size around 30nm. The size of the primary particles was uniform, especially for the film prepared at low laser power density. At low laser power density, proportion of β-sheet increased and that of random coil decreased. Proportion of random coil was also increased by the wet colloidal process. PLD with low power density is most suitable to preserve the secondary structure in the protein thin film.


2006 ◽  
Vol 15 (9) ◽  
pp. 1235-1241 ◽  
Author(s):  
A.M. Wu ◽  
J. Sun ◽  
X.K. Shen ◽  
N. Xu ◽  
Z.F. Ying ◽  
...  

2012 ◽  
Vol 8 (6) ◽  
pp. 445-448 ◽  
Author(s):  
Shao-lan Li ◽  
Li-chun Zhang ◽  
Yan-feng Dong ◽  
Feng-zhou Zhao

2004 ◽  
Vol 19 (3) ◽  
pp. 950-958 ◽  
Author(s):  
Eric Irissou ◽  
Boris Le Drogoff ◽  
Mohammed Chaker ◽  
Michel Trudeau ◽  
Daniel Guay

A structural and morphological study of nanostructured gold thin films prepared by pulsed laser deposition in the presence of several inert background gases (Ar, He, and N2) and at various pressures (from 10 mTorr to 1 Torr) and target-to-substrate distances (from 1 to 10 cm) is presented. Structural and morphological analyses were undertaken using semiquantitative x-ray diffraction, scanning tunneling microscopy, and transmission electron microscopy. For each set of deposition conditions, the kinetic energy of the neutral gold species [Au(I)] present in the plasma plume was determined by time-of-flight emission spectroscopy and used to characterize the plasma dynamics. It is shown that all films exhibit a transition from highly [111] oriented to polycrystalline as the Au(I) kinetic energy decreases. The polycrystalline phase ratio is close to 0% for Au(I) kinetic energy larger than approximately 3.0 eV/atom and approximately 86 ± 10% for Au(I) kinetic energy smaller than approximately 0.30 eV/atom, irrespective of the background gas atmosphere. The mean crystallite size of both phases and the mean roughness of the films also follow a unique relation with the Au(I) kinetic energy, independently of the nature of the background gas, and nanocrystalline films with crystallite size as small as 12 nm are obtained for Au(I) kinetic energy smaller than 0.3 eV/atom.


Sign in / Sign up

Export Citation Format

Share Document