Small Angle X-Ray Scattering Studies of Fatigue in Polystyrene

1986 ◽  
Vol 79 ◽  
Author(s):  
H. R. Brown ◽  
E. J. Kramer ◽  
R. A. Bubeck

AbstractSmall angle scattering has been used to study the mechanical fatigue of crazes in polystyrene. The high radiation intensity obtainable from a synchrotron has permitted the examination of the processes that occur during the fatigue in real time. Both the short term changes that occur within a single cycle and the long term changes that occur over many cycles have been observed.Most of the craze growth, as measured by the scattering invariant obtained at peak deformation, occurred in the first cycle of fatigue. However the craze fibril diameter, obtained by Porod analysis, doubled over 250 cycles. As the volume of craze was not growing during during the fatigue this fibril diameter increase was believed to occur by change, that is coalescence, of the preexisting fibrils.The SAXS patterns obtained at a number of different deformations within a single cycle were compared with calculated patterns obtained assuming that the fibrils bend in a sinusoidal manner. Good qualitative agreement was obtained so it was concluded that the craze fibrils showed considerable deformation as the craze was unloaded and then straightened out again on reloading. When the ratio of minimum to maximum deformation was decreased from 0.9 to 0.5 the fibril deformation (contraction) increased to 10% with the fibrils remaining straight. As the minimum deformation was decreased below this the craze stress tends to zero and fibril buckling was evident. The main changes in fatigue lifetime occurred over the regions where there fibrils were straight, perhaps because buckling involves relatively small deformations.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Susyn Joan Kelly ◽  
Lizette duPlessis ◽  
John Soley ◽  
Frazer Noble ◽  
Hannah Carolyn Wells ◽  
...  

Abstract Objective Small angle X-ray scattering (SAXS) analysis is a sensitive way of determining the ultrastructure of collagen in tissues. Little is known about how parameters measured by SAXS are affected by preservatives commonly used to prevent autolysis. We determined the effects of formalin, glutaraldehyde, Triton X and saline on measurements of fibril diameter, fibril diameter distribution, and D-spacing of corneal collagen using SAXS analysis. Results Compared to sections of sheep and cats’ corneas stored frozen as controls, those preserved in 5% glutaraldehyde and 10% formalin had significantly larger mean collagen fibril diameters, increased fibril diameter distribution and decreased D-spacing. Sections of corneas preserved in Triton X had significantly increased collagen fibril diameters and decreased fibril diameter distribution. Those preserved in 0.9% saline had significantly increased mean collagen fibril diameters and decreased diameter distributions. Subjectively, the corneas preserved in 5% glutaraldehyde and 10% formalin maintained their transparency but those in Triton X and 0.9% saline became opaque. Subjective morphological assessment of transmission electron microscope images of corneas supported the SAXS data. Workers using SAXS analysis to characterize collagen should be alerted to changes that can be introduced by common preservatives in which their samples may have been stored.


2017 ◽  
Vol 50 (3) ◽  
pp. 951-958 ◽  
Author(s):  
Sen Chen ◽  
Juncheng E ◽  
Sheng-Nian Luo

SLADS(http://www.pims.ac.cn/Resources.html), a parallel code for direct simulations of X-ray scattering of large anisotropic dense nanoparticle systems of arbitrary species and atomic configurations, is presented. Particles can be of arbitrary shapes and dispersities, and interactions between particles are considered. Parallelization is achieved in real space for the sake of memory limitation. The system sizes attempted are up to one billion atoms, and particle concentrations in dense systems up to 0.36. Anisotropy is explored in terms of superlattices. One- and two-dimensional small-angle scattering or diffraction patterns are obtained.SLADSis validated self-consistently or against cases with analytical solutions.


2017 ◽  
Vol 11 (3) ◽  
pp. 229-233 ◽  
Author(s):  
László Almásy ◽  
Ana-Maria Putz ◽  
Adél Len ◽  
Josef Plestil ◽  
Cecilia Savii

Silica matrices were prepared via acid catalysed sol-gel processing augmented with sonocatalysis. As silica precursors, a mixture of tetra-functionalized alkoxide (TMOS) and three-functionalized alkoxide methyl-trimethoxysilane (MTMS) were employed. Ionic liquid N-butyl-3-methylpyridinium tetrafluoroborate ([bmPy][BF4]), was used in various proportions, aiming to catalyse the sol-gel reactions, and to influence the mesoporous silica materials properties, serving as pore template. Small-angle neutron (SANS) and small-angle X-ray scattering (SAXS) techniques were used to explore the xerogels and sonogels microstructure evolution as a function of the IL/Si molar ratio. The results show a strong increase of the primary particle size under the influence of the ionic liquid. Ultrasonic agitation leads to further size increase by ca. 10%.


2020 ◽  
Vol 22 (22) ◽  
pp. 12713-12723 ◽  
Author(s):  
Lukas Ludescher ◽  
Roland Morak ◽  
Stephan Braxmeier ◽  
Florian Putz ◽  
Nicola Hüsing ◽  
...  

Apparent strain artifacts resulting from the evaluation of small-angle X-ray scattering data superimpose the actual adsorption induced deformation in silica with hierarchical porosity. These artifacts can be corrected for by detailed modelling.


2019 ◽  
Vol 52 (2) ◽  
pp. 344-350 ◽  
Author(s):  
Ahmed S. A. Mohammed ◽  
Agnese Carino ◽  
Andrea Testino ◽  
Mohammad Reza Andalibi ◽  
Antonio Cervellino

In this article, a practical procedure for absolute intensity calibration for small-angle scattering (SAXS) studies on liquid microjets is established. A gold nanoparticle suspension is used as standard so that the intercept at Q = 0 of the SAXS scattering curve provides a scaling reference. In order to obtain the most precise extrapolation at Q = 0, an extension of the Guinier approximation has been used, with a second-order term in the fit that adapts to a larger Q range.


1999 ◽  
Vol 32 (2) ◽  
pp. 273-280 ◽  
Author(s):  
Dietmar Eberbeck ◽  
Jürgen Bläsing

The size and the size dispersion of the composite particles of ferrofluids were determined assuming a lognormal distribution of core radii. Small-angle X-ray scattering data were fitted by the theoretical scattering function of two-phase spheres. Reliable results were obtained, because the scattering share of the surface layer can be taken into account. The particles aggregate at high as well as very low concentrations. After freezing of the carrier liquid, the particles within the clusters come together tightly. The measured minimal particle distance gives information about the effective surface-layer thickness. Two types of aggregates, namely compact clusters and extended net-like aggregates, were distinct in middle length scales.


1997 ◽  
Vol 30 (5) ◽  
pp. 633-636 ◽  
Author(s):  
D. R. dos Santos ◽  
I. L. Torriani ◽  
A. Y. Ramos ◽  
M. Knobel

The structural evolution of the nanocrystalline material obtained from the amorphous compound Fe73.5CuNb3Si13.5B9 was investigated by small-angle X-ray scattering. Four sets of amorphous metallic ribbons were produced by melt spinning using different quenching rates. Samples of each set were annealed above the crystallization temperature; X-ray diffraction analysis showed the formation of an ordered Fe–Si solid solution with average grain sizes ranging from 9 to 11 nm. Small-angle scattering curves of the samples in the initial amorphous states revealed different intensities for different quenching rates, caused by the presence of heterogeneities with dimensions larger than those of the crystallites formed after thermal treatment. In addition, scattering measurements carried out in situ during isothermal annealing showed an intensity evolution as a function of time, attributed to electron-density contrast variation caused by the atomic diffusion process that occurs during crystallization.


2014 ◽  
Vol 47 (2) ◽  
pp. 810-815 ◽  
Author(s):  
Andreas Hofmann ◽  
Andrew E. Whitten

Small-angle X-ray scattering has established itself as a common technique in structural biology research. Here, two novel Java applications to aid modelling of three-dimensional macromolecular structures based on small-angle scattering data are described.MolScatis an application that computes small-angle scattering intensities from user-provided three-dimensional models. The program can fit the theoretical scattering intensities to experimental X-ray scattering data.SAFIRis a program for interactive rigid-body modelling into low-resolution shapes restored from small-angle scattering data. The program has been designed with an emphasis on ease of use and intuitive handling. An embedded version ofMolScatis used to enable quick evaluation of the fit between the model and experimental scattering data.SAFIRalso provides options to refine macromolecular complexes with optional user-specified restraints against scattering data by means of a Monte Carlo approach.


Sign in / Sign up

Export Citation Format

Share Document