Defect Energy Levels in HfO2, ZrO2, La2O3 and SrTiO3

2004 ◽  
Vol 811 ◽  
Author(s):  
K Xiong ◽  
P W Peacock ◽  
J Robertson

AbstractDefect energy levels of oxygen vacancies in various high K oxides HfO2, ZrO2, La2O3 and SrTiO3 have been calculated using methods which give the correct band gap, such as the screened exchange and weighted density approximation.

Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 736
Author(s):  
Wei Yi ◽  
Jun Chen ◽  
Takashi Sekiguchi

Electron-beam-induced current (EBIC) and cathodoluminescence (CL) have been applied to investigate the electrical and optical behaviors of dislocations in SrTiO3. The electrical recombination activity and defect energy levels of dislocations have been deduced from the temperature-dependent EBIC measurement. Dislocations contributed to resistive switching were clarified by bias-dependent EBIC. The distribution of oxygen vacancies around dislocations has been obtained by CL mapping. The correlation between switching, dislocation and oxygen vacancies was discussed.


2006 ◽  
Vol 251-252 ◽  
pp. 1-12 ◽  
Author(s):  
Faruque M. Hossain ◽  
Graeme E. Murch ◽  
L. Sheppard ◽  
Janusz Nowotny

The purpose of this work is to study the effect of bulk point defects on the electronic structure of rutile TiO2. The paper is focused on the effect of oxygen nonstoichiometry in the form of oxygen vacancies, Ti interstitials and Ti vacancies and related defect disorder on the band gap width and on the local energy levels inside the band gap. Ab initio density functional theory is used to calculate the formation energies of such intrinsic defects and to detect the positions of these defect induced energy levels in order to visualize the tendency of forming local mid-gap bands. Apart from the formation energy of the Ti vacancies (where experimental data do not exist) our calculated results of the defect formation energies are in fair agreement with the experimental results and the defect energy levels consistently support the experimental observations. The calculated results indicate that the exact position of defect energy levels depends on the estimated band gap and also the charge state of the point defects of TiO2.


Sign in / Sign up

Export Citation Format

Share Document