exchange and correlation
Recently Published Documents


TOTAL DOCUMENTS

363
(FIVE YEARS 28)

H-INDEX

48
(FIVE YEARS 3)

2021 ◽  
Vol 103 (23) ◽  
Author(s):  
E. I. Harris-Lee ◽  
A. D. N. James ◽  
S. B. Dugdale

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 655
Author(s):  
Alisher M. Kariev ◽  
Michael E. Green

There are reasons to consider quantum calculations to be necessary for ion channels, for two types of reasons. The calculations must account for charge transfer, and the possible switching of hydrogen bonds, which are very difficult with classical force fields. Without understanding charge transfer and hydrogen bonding in detail, the channel cannot be understood. Thus, although classical approximations to the correct force fields are possible, they are unable to reproduce at least some details of the behavior of a system that has atomic scale. However, there is a second class of effects that is essentially quantum mechanical. There are two types of such phenomena: exchange and correlation energies, which have no classical analogues, and tunneling. Tunneling, an intrinsically quantum phenomenon, may well play a critical role in initiating a proton cascade critical to gating. As there is no classical analogue of tunneling, this cannot be approximated classically. Finally, there are energy terms, exchange and correlation energy, whose values can be approximated classically, but these approximations must be subsumed within classical terms, and as a result, will not have the correct dependence on interatomic distances. Charge transfer, and tunneling, require quantum calculations for ion channels. Some results of quantum calculations are shown.


2020 ◽  
Author(s):  
Emanuele Coccia ◽  
Eleonora Luppi ◽  
Carlo Federico Pauletti

<p>This study arises from the attempt to answer the following question: how different descriptions of electronic exchange and correlation affect the high-harmonic generation (HHG) spectroscopy of H2, N2 and CO2 molecules? We compare HHG spectra for H2, N2 and CO2 with different ab initio electronic structures methods: real-time time-dependent configuration interaction (RT-TDCIS) and real-time time-dependent density functional theory (RT-TDDFT) using truncated basis sets composed of correlated wave functions expanded on Gaussian basis sets. In the framework of RT-TDDFT, we employ PBE and LC-ωPBE functionals. We study HHG spectroscopy by disentangling the effect of electronic exchange and correlation. We first analyse the electronic exchange alone and in the case of RT-TDDFT with LC-ωPBE, we use ω = 0.3 and ω = 0.4 to tune the percentage of long-range Hartree-Fock exchange and of short-range exchange PBE. Then, we added the correlation as described by PBE functional. All the methods give very similar HHG spectra and they seem not to be particularly sensitive to the different description of exchange and correlation or to the correct asymptotic behaviour of the Coulomb potential. Despite this general trend, some differences are found in the region connecting the cutoff and the background. Here, the harmonics can be resolved with different accuracy depending on the theoretical schemes used. We believe that the investigation of the molecular continuum and its coupling with strong fields merits further theoretical investigations in the next future. </p>


2020 ◽  
Author(s):  
Emanuele Coccia ◽  
Eleonora Luppi ◽  
Carlo Federico Pauletti

<p>This study arises from the attempt to answer the following question: how different descriptions of electronic exchange and correlation affect the high-harmonic generation (HHG) spectroscopy of H2, N2 and CO2 molecules? We compare HHG spectra for H2, N2 and CO2 with different ab initio electronic structures methods: real-time time-dependent configuration interaction (RT-TDCIS) and real-time time-dependent density functional theory (RT-TDDFT) using truncated basis sets composed of correlated wave functions expanded on Gaussian basis sets. In the framework of RT-TDDFT, we employ PBE and LC-ωPBE functionals. We study HHG spectroscopy by disentangling the effect of electronic exchange and correlation. We first analyse the electronic exchange alone and in the case of RT-TDDFT with LC-ωPBE, we use ω = 0.3 and ω = 0.4 to tune the percentage of long-range Hartree-Fock exchange and of short-range exchange PBE. Then, we added the correlation as described by PBE functional. All the methods give very similar HHG spectra and they seem not to be particularly sensitive to the different description of exchange and correlation or to the correct asymptotic behaviour of the Coulomb potential. Despite this general trend, some differences are found in the region connecting the cutoff and the background. Here, the harmonics can be resolved with different accuracy depending on the theoretical schemes used. We believe that the investigation of the molecular continuum and its coupling with strong fields merits further theoretical investigations in the next future. </p>


2020 ◽  
Vol 153 (7) ◽  
pp. 074114
Author(s):  
Aaron D. Kaplan ◽  
Biswajit Santra ◽  
Puskar Bhattarai ◽  
Kamal Wagle ◽  
Shah Tanvir ur Rahman Chowdhury ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document