Doe Progress in Assessing the Long Term Performance of Waste Package Materials

1986 ◽  
Vol 84 ◽  
Author(s):  
A. Berusch ◽  
E. Gause

Summary:Each of the projects has made significant progress toward the eventual operation of a repository for the disposal of high-level radioactive wastes in the United States. Although much has been accomplished, much remains to be done. For example, the Site Characterization Plans for BWIP and NNWSI are nearing completion to be followed by initiation of site characterization activities. The Site Characterization Plan for the selected salt site is scheduled for completion later in 1987. Waste package advanced conceptual design studies are currently scheduled to begin at each project before the end of FY 1987. These efforts will lead to selections of concepts to be detailed in the license application design phase. Compliance with the NRC criteria that require long-term waste package performance will be demonstrated by DOE by performing all of the aforementioned activities. In doing so, the DOE will also be assured that its plan for the safe disposal of high-level waste will be satisfactorily implemented.

2010 ◽  
Vol 73 ◽  
pp. 194-202 ◽  
Author(s):  
Evaristo J. Bonano ◽  
David S. Kessel ◽  
Lori J. Dotson

For more than 30 years Sandia National Laboratories (SNL) has played a key role in the development and implementation of total system analyses of waste management systems in the United States. Two very important applications have been the total system analysis of long term performance that supported (1) the Compliance Certification Application (CCA) for the Waste Isolation Pilot Plant (WIPP) in 1996 and (2) the License Application (LA) for the Yucca Mountain (YM) Repository in 2008.


1988 ◽  
Vol 127 ◽  
Author(s):  
M. G. Piepho ◽  
P. J. Turner ◽  
P. W. Reimus

ABSTRACTRadiolysis may significantly affect the long-term performance of nuclear waste packages in a geologic repository. Radiolysis of available moisture and air in an unsaturated or saturated environment will create transient species that can significantly change the pH and/or Eh of the available moisture. These changes can influence rates of containment corrosion, waste form dissolution, and radionuclide solubilities and transport.Many of the pertinent radiochemical reactions are not completely understood, and most of the associated rate constants are poorly characterized. To help identify the important radiochemical reactions, rate constants, species, and environmental conditions, an importance theory code, SWATS (Sensitivity With Adjoint Theory-Sparse version)-LOOPCHEM, has been developed for the radiolytic chemical kinetics model in the radiolysis code LOOPCHEM. The LOOPCHEM code calculates the concentrations of various species in a radiolytic field over time. The SWATS-LOOPCHEM code efficiently calculates: 1) the importance (relative to a defined response of interest) of each species concentration over time, 2) the sensitivity of each parameter of interest, and 3) the importance of each equation in the radiolysis model. The calculated results will be used to guide future experimental and modeling work for determining the importance of radiolysis on waste package performance. A demonstration (the importance of selected concentrations and the sensitivities of selected parameters) of the SWATS-LOOPCHEM code is provided for illustrative purposes, and no attempt is made at this time to interpret the results for waste package performance assessment purposes.


Author(s):  
Chris Alexander

Although composite materials are used to repair and reinforce a variety of anomalies in high pressure transmission gas and liquid pipelines, there continues to be widespread debate regarding what constitutes a long-term composite repair. The United States regulations require that composite repairs must be able to permanently restore the serviceability of the repaired pipeline, while in contrast the Canadian regulations take a more prescriptive approach by integrating the ASME PCC-2 and ISO 24817 composite repair standards along with a requirement for establishing a 50-year design life. In this paper the author provides a framework for what should be considered in qualifying a composite repair system for long-term performance by focusing on the critical technical aspects associated with a sound composite repair. The presentation includes a discussion on establishing an appropriate composite design stress using the existing standards, using full-scale testing to ensure that stresses in the repair do not exceed the designated composite design stresses, and guidance for operators in how to properly integrate their pipeline operating conditions to establish a design life. By implementing the recommendations presented in this paper, operators will be equipped with a resource for objectively evaluating the composite repair systems used to repair their pipeline systems.


2003 ◽  
Vol 1832 (1) ◽  
pp. 217-223 ◽  
Author(s):  
Donald E. Watson

Stone matrix asphalt (SMA) and Superpave® represent relatively new mix design technologies in the United States. Therefore, a condition survey was conducted of mixes that had been in service for several years to evaluate the long-term performance of SMA and Superpave projects. This study is a follow-up to a 1995 review of SMA projects and a 1998 review of Superpave projects. Both SMA and Superpave are acknowledged to be rut-resistant mixes, and this resistance was shown to be the case during this project review. However, a significant amount of cracking occurred early in the life of some of these mixtures. Overall, the SMA mixtures appeared to be more durable than the Superpave mixtures evaluated. The SMA mixtures have been in place about 2½ years longer than the Superpave mixtures, but the overall condition is about the same. Some of the primary conclusions from the survey are as follows: both SMA and Superpave mixtures were shown to be rut-resistant even when placed on facilities with high traffic volume; much of the observed cracking, especially load cracking, appeared to be more related to problems other than mix design or material properties; and SMA mixtures can be expected to last longer than Superpave mixtures before reaching the same condition level.


Author(s):  
Wim Cool ◽  
Elise Vermariën ◽  
William Wacquier ◽  
Janez Perko

ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, and its partners have developed long-term safety and performance analyses in the framework of the license application for a surface disposal facility for low level radioactive waste (category A waste) at Dessel, Belgium. This paper focusses on the methodology of the safety assessments and on key results from the application of this methodology. An overview is given (1) of the performance analyses for the containment safety function of the disposal system and (2) of the radiological impact analyses confirming that radiological impacts are below applicable reference values and constraints and leading to radiological criteria for the waste and the facility. In this discussion, multiple indicators for performance and safety are used to illustrate the multi-faceted nature of long-term performance and safety of the surface disposal. This contributes to the multiple lines of reasoning for confidence building that a positive decision to proceed to the next stage of construction is justified.


2016 ◽  
Vol 80 (5) ◽  
pp. 765-780 ◽  
Author(s):  
P. Sengupta ◽  
J. Sanwal ◽  
N. L. Dudwadkar ◽  
S. C. Tripathi ◽  
P. M. Gandhi

AbstractStalagmites and stalactites, as observed within natural caves, may develop inside geological repositories during constructional and post-operational periods. It is therefore important to understand actinide sorption within such materials. Towards this, experimental studies were carried out with 233U, 238Np (VI), 238Np (IV), 239Pu and 241Am radiotracers using natural speleothem samples collected from the Dharamjali cave of the Kumaon Lesser Himalayas, India. Petrological/mineralogical studies showed that natural speleothems have three general domains: (1) columnar calcite; (2) microcrystalline calcite; and (3) botryoidal aragonite – each with ferruginous materials. Results showed that all domains of speleothems can take up >99% actinides, irrespective of valence state and pH (1–6 range) of the solution. However, distribution coefficients were found to be at a maximum in aragonite for most of the actinides. Such data are very important for long-term performance and safety assessments of the deep geological repositories planned for the disposal of high-level nuclear wastes.


2019 ◽  
Vol 9 (12) ◽  
pp. 2437 ◽  
Author(s):  
Sebastian Wegel ◽  
Victoria Czempinski ◽  
Pao-Yu Oei ◽  
Ben Wealer

The nuclear industry in the United States of America has accumulated about 70,000 metric tons of high-level nuclear waste over the past decades; at present, this waste is temporarily stored close to the nuclear power plants. The industry and the Department of Energy are now facing two related challenges: (i) will a permanent geological repository, e.g., Yucca Mountain, become available in the future, and if yes, when?; (ii) should the high-level waste be transported to interim storage facilities in the meantime, which may be safer and more cost economic? This paper presents a mathematical transportation model that evaluates the economic challenges and costs associated with different scenarios regarding the opening of a long-term geological repository. The model results suggest that any further delay in opening a long-term storage increases cost and consolidated interim storage facilities should be built now. We show that Yucca Mountain’s capacity is insufficient and additional storage is necessary. A sensitivity analysis for the reprocessing of high-level waste finds this uneconomic in all cases. This paper thus emphasizes the urgency of dealing with the high-level nuclear waste and informs the debate between the nuclear industry and policymakers on the basis of objective data and quantitative analysis.


1984 ◽  
Vol 44 ◽  
Author(s):  
John K. Bates ◽  
Thomas J. Gerding

AbstractA test method has been developed to measure the release of radionuclides from the waste package under simulated NNWSI repository conditions, and to provide information concerning materials interactions that may occur in the repository. Data from 13 weeks of unsaturated testing are discussed and compared to that from a 13 week analog test. The data indicate that the waste form test is capable of producing consistent, reproducible results that will be useful in evaluating the role of the waste package in the long-term performance of the repository.


1986 ◽  
Vol 84 ◽  
Author(s):  
Lars O. Werme ◽  
Bernd Grambow

AbstractCurrent trends in modelling waste package performance are reviewed mainly from the perspective of the Swedish SKB studies. Examples are given, which illustrate the approaches for modelling different waste forms, i.e. HLW glass and spent nuclear fuel, and candidate canister materials, such as copper and steel. The relative importance of thermodynamics, reaction kinetics and near-field transport are discussed.


Sign in / Sign up

Export Citation Format

Share Document