scholarly journals Determination of Plastic Properties of Polycrystalline Metallic Materials by Nanoindentation – Experiments and Finite Element Simulations

2004 ◽  
Vol 841 ◽  
Author(s):  
Karsten Durst ◽  
Björn Backes ◽  
Mathias Göken

ABSTRACTThe determination of plastic properties of metallic materials by nanoindentation requires the analysis of the indentation process and the evaluation methods. Particular effects on the nanoscale, like the indentation size effect or piling up of the material around the indentation, need to be considered. Nanoindentation experiments were performed on conventional grain sized (CG) as well as on ultrafine-grained (UFG) copper and brass. The indentation experiments were complemented with finite element simulations using the monotonic stress-strain curve as input data. All indentation tests were carried out using cube-corner and Berkovich geometry and thus different amount of plastic strain was applied to the material, according to Tabors theory. We find an excellent agreement between simulations and experiments for the UFG materials from which a representative strain of εB ≈ 0.1 and εcc ≈ 0.2 is determined. With these data, the slope of the stress-strain curve is predicted for all materials down to an indentation depth of 800 nm.

2010 ◽  
Vol 437 ◽  
pp. 589-593
Author(s):  
Tung Sheng Yang ◽  
Te Hua Fang ◽  
C.T. Kawn ◽  
G.L. Ke ◽  
S.Y. Chang

Instrumented indentation is widely used to probe the elastic and plastic properties of engineering materials. Finite Element Method (FEM) has been widely used for numerical simulation of indentation tests on bulk and film material in order to analyze its deformation response. This study proposed an improved technique to determine the stress-strain curve of bulk material. FEM in conjunction with an abductive network is used to predict the stress-strain relationship of bilinear elastic-plastic material from the nanoindentation test’s force-displacement curve.


1986 ◽  
Vol 18 (5) ◽  
pp. 664-668
Author(s):  
M. V. Shakhmatov ◽  
V. V. Erofeev ◽  
V. A. Lupin ◽  
A. A. Ostsemin

Author(s):  
Lanre Odina ◽  
Robert J. Conder

When subjected to permanent ground deformations, buried pipelines may fail by local buckling (wrinkling under compression) or by tensile rupture. The initial assessment of the effects of predicted seismic fault movements on the buried pipeline is performed using analytical approaches by Newmark-Hall and Kennedy et al, which is restricted to cases when the pipeline is put into tension. Further analysis is then undertaken using finite element methods to assess the elasto-plastic response of the pipeline response to the fault movements, particularly the compressive strain limits. The finite element model is set up to account for the geometric and material non-linear parameters. The pipe material behaviour is generally assumed to have a smooth strain hardening (roundhouse) post-yield behaviour and defined using the Ramberg-Osgood stressstrain curve definition with the plasticity modelled using incremental theory with a von Mises yield surface, associated flow rule and isotropic hardening. However, material tests on seamless pipes (X-grade) show that the stress-strain curve typically displays a Lu¨der’s plateau behaviour (yield point elongation) in the post-yield state. The Lu¨der’s plateau curve is considered conservative for pipeline design and could have a significant impact on strain-based integrity assessment. This paper compares the pipeline response from a roundhouse stress-strain curve with that obtained from a pipe material exhibiting Lu¨der’s plateau behaviour and also examines the implications of a Lu¨der’s plateau for pipeline structural integrity assessments.


Sign in / Sign up

Export Citation Format

Share Document