scholarly journals Determination of plastic properties of polycrystalline metallic materials by nanoindentation: experiments and finite element simulations

Author(s):  
B. Backes ◽  
K. Durst ◽  
M. Göken
2004 ◽  
Vol 841 ◽  
Author(s):  
Karsten Durst ◽  
Björn Backes ◽  
Mathias Göken

ABSTRACTThe determination of plastic properties of metallic materials by nanoindentation requires the analysis of the indentation process and the evaluation methods. Particular effects on the nanoscale, like the indentation size effect or piling up of the material around the indentation, need to be considered. Nanoindentation experiments were performed on conventional grain sized (CG) as well as on ultrafine-grained (UFG) copper and brass. The indentation experiments were complemented with finite element simulations using the monotonic stress-strain curve as input data. All indentation tests were carried out using cube-corner and Berkovich geometry and thus different amount of plastic strain was applied to the material, according to Tabors theory. We find an excellent agreement between simulations and experiments for the UFG materials from which a representative strain of εB ≈ 0.1 and εcc ≈ 0.2 is determined. With these data, the slope of the stress-strain curve is predicted for all materials down to an indentation depth of 800 nm.


2006 ◽  
Vol 21 (4) ◽  
pp. 995-1011 ◽  
Author(s):  
Lugen Wang ◽  
S.I. Rokhlin

This paper quantitatively describes the loading-unloading response in nanoindentation with sharp indenters using scaling analyses and finite element simulations. Explicit forward and inverse scaling functions for an indentation unloading have been obtained and related to those functions for the loading response [L. Wang et al., J. Material Res.20(4), 987–1001 (2005)]. The scaling functions have been obtained by fitting the large deformation finite element simulations and are valid from the elastic to the full plastic indentation regimes. Using the explicit forward functions for loading and unloading, full indentation responses for a wide range of materials can be obtained without use of finite element calculations. The corresponding inverse scaling functions allow one to obtain material properties from the indentation measurements. The relation between the work of indentation and the ratio between hardness and modulus has also been studied. Using these scaling functions, the issue of nonuniqueness of the determination of material modulus, yield stress, and strain-hardening exponent from nanoindentation measurements with a single sharp indenter has been further investigated. It is shown that a limited material parameter range in the elastoplastic regime can be defined where the material modulus, yield stress, and strain-hardening exponent may be determined from only one full indentation response. The error of such property determination from scattering in experimental measurements is determined.


2021 ◽  
Vol 166 ◽  
pp. 112327
Author(s):  
Javier Ordieres ◽  
Eduardo Rodríguez ◽  
Angel Bayón ◽  
Joan Caixas ◽  
Andrea Barbensi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document