Coupling of Chemical Processes in the Near Field

2006 ◽  
Vol 932 ◽  
Author(s):  
B. Grambow ◽  
E. Giffaut

ABSTRACTCoupled modelling has been performed using geochemical/transport codes and radiolysis models to describe the chemical evolution of the waste forms “high-level waste glass” and “spent nuclear fuel” together with its waste package and engineered barrier surroundings. Near field processes considered include container corrosion, hydrogen generation, mass transfer for radionuclides and other waste matrix components in corrosion products and buffer materials, geochemistry of near field solution chemistry, sorption of radionuclides on surface sites in the nano-sized pore space of near field materials and the radiolytic decomposition of pore water. The rate limiting steps in waste form dissolution and secondary phase formation mechanism and the associated radionuclide mobilisation chemistry (solubility, solid solution formation, speciation, redox stability) are strongly influenced by the near field constraints.

2019 ◽  
Vol 98 ◽  
pp. 10005
Author(s):  
Marek Pękala ◽  
Paul Wersin ◽  
Veerle Cloet ◽  
Nikitas Diomidis

Radioactive waste is planned to be disposed in a deep geological repository in the Opalinus Clay (OPA) rock formation in Switzerland. Cu coating of the steel disposal canister is considered as potential a measure to ensure complete waste containment of spent nuclear fuel (SF) and vitrified high-level waste (HLW) or a period of 100,000 years. Sulphide is a potential corroding agent to Cu under reducing redox conditions. Background dissolved sulphide concentrations in pristine OPA are low, likely controlled by equilibrium with pyrite. At such concentrations, sulphide-assisted corrosion of Cu would be negligible. However, the possibility exists that sulphate reducing bacteria (SRB) might thrive at discrete locations of the repository’s near-field. The activity of SRB might then lead to significantly higher dissolved sulphide concentrations. The objective of this work is to employ reactive transport calculations to evaluate sulphide fluxes in the near-field of the SF/HLW repository in the OPA. Cu canister corrosion due to sulphide fluxes is also simplistically evaluated.


Author(s):  
Yongsoo Hwang ◽  
Ian Miller

This paper describes an integrated model developed by the Korean Atomic Energy Research Institute (KAERI) to simulate options for disposal of spent nuclear fuel (SNF) and reprocessing products in South Korea. A companion paper (Hwang and Miller, 2009) describes a systems-level model of Korean options for spent nuclear fuel (SNF) management in the 21’st century. The model addresses alternative design concepts for disposal of SNF of different types (CANDU, PWR), high level waste, and fission products arising from a variety of alternative fuel cycle back ends. It uses the GoldSim software to simulate the engineered system, near-field and far-field geosphere, and biosphere, resulting in long-term dose predictions for a variety of receptor groups. The model’s results allow direct comparison of alternative repository design concepts, and identification of key parameter uncertainties and contributors to receptor doses.


2003 ◽  
Vol 807 ◽  
Author(s):  
Paul Wersin ◽  
Lawrence H. Johnson ◽  
Bernhard Schwyn

ABSTRACTRedox conditions were assessed for a spent fuel and high-level waste (SF/HLW) and an intermediate-level waste (ILW) repository. For both cases our analysis indicates permanently reducing conditions after a relatively short oxic period. The canister-bentonite near field in the HLW case displays a high redox buffering capacity because of expected high activity of dissolved and surface-bound Fe(II). This is contrary to the cementitious near field in the ILW case where concentrations of dissolved reduced species are low and redox reactions occur primarily via solid phase transformation processes.For the bentonite-canister near field, redox potentials of about -100 to -300 mV (SHE) are estimated, which is supported by recent kinetic data on U, Tc and Se interaction with reduced iron systems. For the cementitious near field, redox potentials of about -200 to -800 mV are estimated, which reflects the large uncertainties related to this alkaline environment.


Author(s):  
Bernhard Kienzler ◽  
Peter Vejmelka ◽  
Volker Metz

Abstract The amount of mobile radionuclides is controlled by the geochemical isolation potential of the repository. Many investigations are available in order to determine the maximal radionuclide concentrations released from different waste forms of specific disposal strategies for disposal in rock salt formations. These investigations result in reaction (dissolution) rates, maximum concentrations, and sorption coefficients. The experimental data have to be applied to various disposal strategies. The case studies presented in this communication cover the selection, the volumes, and the composition of backfill materials used as sorbents for radionuclides. As an example, for brown coal fly ash (BFA) - Q-brine systems, sorption coefficients were measured as well as solublilities of several actinides and other long-lived radionuclides. Dissolved CO32− was buffered to negligible concentration by the presence of high amount of Mg in solution. In the sorption experiments Pu, Th, Np, and U concentrations close or below detection limit were obtained. Concentrations in the same ranges are computed by means of geochemical modeling, if precipitation of “simple” tetravalent hydroxides (An(OH)4(am) phases) is assumed. In the case of U in a Portland cement dominated geochemical environment, measured U(VI) concentration corresponds to the solubility of hexavalent solids, such as Na2U2O7. A similar behavior of U was observed in high-level waste glass experiments. Experiments investigating sorption behavior of corroded cement showed that in the case of application of a sufficient large inventory of actinides, measured concentrations were found to be independent of the inventory. In this case, measured concentrations were controlled by solid phases. If smaller actinide inventories were applied, resulting concentrations were found to be below concentrations constrained by well-known solids. Here, a more or less pronounced sorption of the radioactive elements was observed. The radionuclide concentrations determined in the BFA “sorption” experiments are found to be close to the detection limits. For this reason, it is not possible to extrapolate the radionuclide behavior to lower concentrations. We cannot distinguish, if sorption or precipitation controls measured radionuclide concentrations. However, in the presence of reducing materials such as BFA, solubilities of tetravalent actinides and of Tc(IV) represent a realistic estimation of the maximal element concentrations needed in performance assessment studies. The concentrations of these redox sensitive elements are controlled by precipitation of An(OH)4(am) phases for disposal concepts considered in German salt formations. Under this assumption, quantities such as solid-solution ratios used in (sorption) experiments do not affect the mobilization of the radionuclides. Additional conclusions can be drawn from comparison of the findings for the redox sensitive elements in the BFA / portland cement brine systems: We can assume that expected actinide and technetium concentrations in the near-field of radioactive wastes are affected by the total inventory of radionuclides in the disposal room. Sorption will be relevant, if the total dissolved radionuclide concentration remains below the maximal solubility defined by the solid radionuclide phase which is stable in the geochemical environment. In contrast to the portland cement system, the relevant radionuclide phase are most probably tetravalent hydroxides in the BFA systems. These conclusions are of high importance to performance assessment for the radioactive waste repository systems, because they restrict the applicability of sorption models in the near field of the waste.


MRS Advances ◽  
2020 ◽  
Vol 5 (11) ◽  
pp. 539-547
Author(s):  
N. Rodríguez-Villagra ◽  
L.J. Bonales ◽  
J. Cobos

ABSTRACTIn a deep geological repository (DGR) scenario, uranium oxidized in aqueous systems will be stabilized as UO22+ (hexavalent uranium), as a consequence of tetravalent uranium oxidation by radiolytic byproducts. Uranyl cationic species (UO22+) in different speciation forms are expected to be found at the whole pH range conditions. The importance of UO22+ lies in its potential incorporation of trace radioelements onto secondary uranyl phases. In view of the difficulty of U chemistry in natural groundwater, it is necessary to improve speciation assessment techniques so as to understand chemical processes. Raman spectroscopy has been shown as a powerful tool to analyze the speciation of various actinyl (UO22+,NpO2+ and PuO22+) and to determine the distribution of those elements which are more likely to be stable in a near-field groundwater environment. Therefore, the aim of this work is to follow UO22+ changes as a consequence of γ radiation in aqueous media under DGR conditions, and to understand the behavior of UO22+ as a function of aqueous media, which help to understand and predict the potential precipitation of the solid phases formed. In this work, the use of Raman spectroscopy adapted to the empirical analysis of different nuclear applications for initial uranium concentrations 0.04M at ambient atmosphere is shown, i.e. as monitoring tool for UO22+ precipitation as a function of pH, studying UO2(NO3)2·6H2O stability in aqueous solutions representative of groundwater, in particular at ionic strength I = 0.02 – 0.4 M and pH from 7 to 13.2; and to evaluate the effect of γ radiation fields. At 10−4-10-3 M of radiolytically formed H2O2 concentration, the amount of uranium in solution decreased, as a results of secondary phases precipitation. The results obtained will be useful to the performance assessment studies of the Spent Nuclear Fuel (SNF) stored in DGRs. The work performed provides a partial picture of secondary phase formations, as a result of corrosion of SNF in a DGR.


2014 ◽  
Vol 94 ◽  
pp. 103-110 ◽  
Author(s):  
Yue Zhou Wei ◽  
Shun Yan Ning ◽  
Qi Long Wang ◽  
Zi Chen ◽  
Yan Wu ◽  
...  

The long-term radiotoxicity of high level liquid waste (HLLW) generated in spent nuclear fuel reprocessing is governed by the content of several long-lived minor actinides (MA) and some specific fission product nuclides. To efficiently separate MA (Am, Cm) and some FPs such as Cs and Sr from the HLLW, we have been studying an advanced aqueous partitioning process, which uses selective adsorption as separation method. In this work, we prepared different types of porous silica-based organic/inorganic adsorbents with fast diffusion kinetics, improved chemical stability and low pressure drop in a packed column. So they are advantageously applicable to efficient separation of the MA and specific FP elements from HLLW. Adsorption and separation behaviors of the MA and some FP elements such as Cs and Sr were studied. Small scale separation tests using simulated and genuine nuclear waste solutions were carried out and the obtained results indicate that the proposed separation method based on selective adsorption is essentially feasible.


1985 ◽  
Vol 50 ◽  
Author(s):  
Hans Wanner

AbstractIn the safety analysis recently reported for a potential Swiss high-level waste repository, radionuclide speciation and solubility limits are calculated for expected granitic groundwater conditions. With the objective of deriving a more realistic description of radionuclide release from the near-field, an investigation has been initiated to quantitatively specify the chemistry of the near-field. In the Swiss case, the main components of the near-field are the glass waste-matrix, a thick cast steel canister horizontally stored in a drift, and a backfill of highly compacted bentonite.Based on available experimental data, an ion-exchange model for sodium, potassium, magnesium, and calcium has been developed, in order to simulate the reaction of sodium bentonite backfill with groundwater. The model assumes equilibrium with calcite as long as sufficient carbonates remain in the bentonite, as well as quartz saturation. The application of this model to the reference groundwater used in ‘Project Gewaehr 85’ results in a significant rise in pH (by up to 3 units) as well as a marked increase in the carbonate concentration.Neptunium and plutonium speciation and solubility limits are calculated for the reference groundwater chemistry gradually altered to that of saturated bentonite water and back again by a water exchange cycle model. The solubility limits estimated in this way generally turn out to be higher for the bentonite water than for the reference groundwater, mainly due to carbonate complexation of the actinide components AnO2+ and AnO22+. Uncertainties are particularly large for neptunium solubility due to its strong Eh dependence in bentonite water.


1993 ◽  
Vol 333 ◽  
Author(s):  
John C. Walton ◽  
Narasi Sridhar ◽  
Gustavo Cragnolino ◽  
Tony Torng ◽  
Prasad Nair

ABSTRACTOne of the requirements for the performance of waste packages prescribed in 10CFR 60.113 is that the high level waste must be “substantially completely” contained for a minimum period of 300 to 1000 years. During this period, the radiation and thermal conditions in the engineered barrier system and the near-field environment are dominated by fission product decay. In the present U.S design of the engineered barrier system, the outer container plays a dominant role in maintaining radionuclide containment. A quantitative methodology for analyzing the performance of the container is described in this paper. This methodology enables prediction of the evolution of the waste package environment in terms of temperature fields, stability of liquid water on the container surface, and concentration of aggressive ions such as chloride. The initiation and propagation of localized corrosion is determined by the corrosion potential of the container material and critical potentials for localized corrosion. The coiTOsion potential is estimated from the kinetics of the anodic and cathodic reactions including oxygen diffusion through scale layers formed on the container surface. The methodology described is applicable to a wide range of metals, alloys and environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document