Evolution of Chemistry and Its Effects on the Corrosion of Engineered Barrier Materials

2006 ◽  
Vol 985 ◽  
Author(s):  
Darrell Dunn ◽  
Yi-Ming Pan ◽  
Xihua He ◽  
Lietai Yang ◽  
Roberto Pabalan

ABSTRACTThe evolution of environmental conditions within the emplacement drifts of a potential high-level waste repository at Yucca Mountain, Nevada, may be influenced by several factors, including the temperature and relative humidity within the emplacement drifts and the composition of seepage water. The performance of the waste package and the drip shield may be affected by the evolution of the environmental conditions within the emplacement drifts. In this study, tests evaluated the evolution of environmental conditions on the waste package surfaces and in the surrounding host rock. The tests were designed to (i) simulate the conditions expected within the emplacement drifts; (ii) measure the changes in near-field chemistry; and (iii) determine environmental influence on the performance of the engineered barrier materials. Results of tests conducted in this study indicate the composition of salt deposits was consistent with the initial dilute water chemistry. Salts and possibly concentrated calcium chloride brines may be more aggressive than either neutral or alkaline brines.

1993 ◽  
Vol 333 ◽  
Author(s):  
John C. Walton ◽  
Narasi Sridhar ◽  
Gustavo Cragnolino ◽  
Tony Torng ◽  
Prasad Nair

ABSTRACTOne of the requirements for the performance of waste packages prescribed in 10CFR 60.113 is that the high level waste must be “substantially completely” contained for a minimum period of 300 to 1000 years. During this period, the radiation and thermal conditions in the engineered barrier system and the near-field environment are dominated by fission product decay. In the present U.S design of the engineered barrier system, the outer container plays a dominant role in maintaining radionuclide containment. A quantitative methodology for analyzing the performance of the container is described in this paper. This methodology enables prediction of the evolution of the waste package environment in terms of temperature fields, stability of liquid water on the container surface, and concentration of aggressive ions such as chloride. The initiation and propagation of localized corrosion is determined by the corrosion potential of the container material and critical potentials for localized corrosion. The coiTOsion potential is estimated from the kinetics of the anodic and cathodic reactions including oxygen diffusion through scale layers formed on the container surface. The methodology described is applicable to a wide range of metals, alloys and environmental conditions.


1996 ◽  
Vol 465 ◽  
Author(s):  
Thomas A. Buscheck ◽  
John J. Nitao ◽  
Lawrence D. Ramspott

ABSTRACTThree-dimensional calculations that explicitly represent a realistic mixture of waste packages (WPs) are used to analyze decay-heat-driven thermal-hydrological behavior around emplacement drifts in a potential high-level waste facility at Yucca Mountain. Calculations, using the NUFT code, compare two fundamentally different ways that WPs can be arranged in the repository, with a focus on temperature, relative humidity, and liquid-phase flux on WPs. These quantities strongly affect WP integrity and the mobilization and release of radionuclides from WPs. Point-load spacing, which places the WPs roughly equidistant from each other, thermally isolates WPs from each other, causing large variability in temperature, relative humidity, and liquid-phase flux along the drifts. Line-load spacing, which places WPs nearly end to end in widely spaced drifts, results in more locally intensive and uniform heating along the drifts, causing hotter, drier, and more uniform conditions. A larger and more persistent reduction in relative humidity on WPs occurs if the drifts are backfilled with a low-thermal-conductivity granular material with hydrologie properties that minimize moisture wicking.


2004 ◽  
Vol 824 ◽  
Author(s):  
Lietai Yang ◽  
Miriam R. Juckett ◽  
Roberto T. Pabalan

AbstractThe electrical conductance or conductivity of three salt mixtures, Na-K-Cl-NO3, Ca-K-Cl and Ca-Na-Cl, were measured at 25, 50 and 70°C [77, 122, and 158 °F] as a function of relative humidity (RH). Mutual deliquescence and efflorescence RH (MDRH and MERH) values were determined based on the conductivity measurements. It was found that the conductivity of the three salt mixtures started to increase at RH values that are approximately 40 % of their MDRH and increased by 1to 2 orders of magnitude just before reaching the MDRH. At the MDRH, a significant increase in conductivity was observed. The MDRH and MERH for the Ca-K-Cl and Ca-Na-Cl mixtures were found to be approximately 15 % in the temperature range of 50 to 70 °C [122 to 158 °F]. The MDRH and MERH for the Na-K-Cl-NO3system were found to be approximately 54 % at 50 °C [122 °F] and decreased significantly with an increase in temperature.


Sign in / Sign up

Export Citation Format

Share Document