scholarly journals Atomic-precision advanced manufacturing for Si quantum computing

MRS Bulletin ◽  
2021 ◽  
Author(s):  
Ezra Bussmann ◽  
Robert E. Butera ◽  
James H. G. Owen ◽  
John N. Randall ◽  
Steven M. Rinaldi ◽  
...  

AbstractA materials synthesis method that we call atomic-precision advanced manufacturing (APAM), which is the only known route to tailor silicon nanoelectronics with full 3D atomic precision, is making an impact as a powerful prototyping tool for quantum computing. Quantum computing schemes using atomic (31P) spin qubits are compelling for future scale-up owing to long dephasing times, one- and two-qubit gates nearing high-fidelity thresholds for fault-tolerant quantum error correction, and emerging routes to manufacturing via proven Si foundry techniques. Multiqubit devices are challenging to fabricate by conventional means owing to tight interqubit pitches forced by short-range spin interactions, and APAM offers the required (Å-scale) precision to systematically investigate solutions. However, applying APAM to fabricate circuitry with increasing numbers of qubits will require significant technique development. Here, we provide a tutorial on APAM techniques and materials and highlight its impacts in quantum computing research. Finally, we describe challenges on the path to multiqubit architectures and opportunities for APAM technique development. Graphic Abstract

Author(s):  
Shiroman Prakash

The ternary Golay code—one of the first and most beautiful classical error-correcting codes discovered—naturally gives rise to an 11-qutrit quantum error correcting code. We apply this code to magic state distillation, a leading approach to fault-tolerant quantum computing. We find that the 11-qutrit Golay code can distil the ‘most magic’ qutrit state—an eigenstate of the qutrit Fourier transform known as the strange state —with cubic error suppression and a remarkably high threshold. It also distils the ‘second-most magic’ qutrit state, the Norell state, with quadratic error suppression and an equally high threshold to depolarizing noise.


Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 128 ◽  
Author(s):  
Daniel Litinski

Given a quantum gate circuit, how does one execute it in a fault-tolerant architecture with as little overhead as possible? In this paper, we discuss strategies for surface-code quantum computing on small, intermediate and large scales. They are strategies for space-time trade-offs, going from slow computations using few qubits to fast computations using many qubits. Our schemes are based on surface-code patches, which not only feature a low space cost compared to other surface-code schemes, but are also conceptually simple~--~simple enough that they can be described as a tile-based game with a small set of rules. Therefore, no knowledge of quantum error correction is necessary to understand the schemes in this paper, but only the concepts of qubits and measurements.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 295 ◽  
Author(s):  
Michael Newman ◽  
Leonardo Andreta de Castro ◽  
Kenneth R. Brown

Measurement-based quantum computing (MBQC) is a promising alternative to traditional circuit-based quantum computing predicated on the construction and measurement of cluster states. Recent work has demonstrated that MBQC provides a more general framework for fault-tolerance that extends beyond foliated quantum error-correcting codes. We systematically expand on that paradigm, and use combinatorial tiling theory to study and construct new examples of fault-tolerant cluster states derived from crystal structures. Included among these is a robust self-dual cluster state requiring only degree-3 connectivity. We benchmark several of these cluster states in the presence of circuit-level noise, and find a variety of promising candidates whose performance depends on the specifics of the noise model. By eschewing the distinction between data and ancilla, this malleable framework lays a foundation for the development of creative and competitive fault-tolerance schemes beyond conventional error-correcting codes.


Sign in / Sign up

Export Citation Format

Share Document