scholarly journals Composites of functional polymers: Toward physical intelligence using flexible and soft materials

Author(s):  
Michael J. Ford ◽  
Yunsik Ohm ◽  
Keene Chin ◽  
Carmel Majidi

AbstractMaterials that can assist with perception and responsivity of an engineered machine are said to promote physical intelligence. Physical intelligence may be important for flexible and soft materials that will be used in applications like soft robotics, wearable computers, and healthcare. These applications require stimuli responsivity, sensing, and actuation that allow a machine to perceive and react to its environment. The development of materials that exhibit some form of physical intelligence has relied on functional polymers and composites that contain these polymers. This review will focus on composites of functional polymers that display physical intelligence by assisting with perception, responsivity, or by off-loading computation. Composites of liquid crystal elastomers, shape-memory polymers, hydrogels, self-healing materials, and transient materials and their functionalities are examined with a viewpoint that considers physical intelligence. Graphic Abstract

2021 ◽  
Author(s):  
Walter Alabiso ◽  
Tiago Manuel Hron ◽  
David Reisinger ◽  
Daniel Bautista Anguís ◽  
Sandra Schlögl

Self-healing polymers are tremendously attractive due to their ability to repair macroscopic damage and defects, thus opening doors to sustainable and reliable functional polymers. In this scope, vitrimers are in...


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4246 ◽  
Author(s):  
Yujie Chen ◽  
Chi Chen ◽  
Hafeez Ur Rehman ◽  
Xu Zheng ◽  
Hua Li ◽  
...  

Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications, from biomimetic and soft robotics to actuators, because they can be operated without sophisticated linkage design and can achieve complex final shapes. Recently, significant achievements have been made in fabrication, modelling, and manipulation of SMP-based artificial muscles. This paper presents a review of the recent progress in shape-memory polymer-based artificial muscles. Here we focus on the mechanisms of SMPs, applications of SMPs as artificial muscles, and the challenges they face concerning actuation. While shape-memory behavior has been demonstrated in several stimulated environments, our focus is on thermal-, photo-, and electrical-actuated SMP artificial muscles.


2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Hung-Jin Huang ◽  
Yu-Liang Tsai ◽  
Shih-Ho Lin ◽  
Shan-hui Hsu

Abstract Soft materials have been developed very rapidly in the biomedical field over the past 10 years because of advances in medical devices, cell therapy, and 3D printing for precision medicine. Smart polymers are one category of soft materials that respond to environmental changes. One typical example is the thermally-responsive polymers, which are widely used as cell carriers and in 3D printing. Self-healing polymers are one type of smart polymers that have the capacity to recover the structure after repeated damages and are often injectable through needles. Shape memory polymers are another type with the ability to memorize their original shape. These smart polymers can be used as cell/drug/protein carriers. Their injectability and shape memory performance allow them to be applied in bioprinting, minimally invasive surgery, and precision medicine. This review will describe the general materials design, characterization, as well as the current progresses and challenges of these smart polymers.


2020 ◽  
Vol 12 (8) ◽  
pp. 9833-9841 ◽  
Author(s):  
Huan Zhang ◽  
Dong Wang ◽  
Ningning Wu ◽  
Cuihua Li ◽  
Caizhen Zhu ◽  
...  

2021 ◽  
Vol 7 (9) ◽  
pp. 123
Author(s):  
Sanne J. M. van Vilsteren ◽  
Hooman Yarmand ◽  
Sepideh Ghodrat

Magnetic soft materials (MSMs) and magnetic shape memory polymers (MSMPs) have been some of the most intensely investigated newly developed material types in the last decade, thanks to the great and versatile potential of their innovative characteristic behaviors such as remote and nearly heatless shape transformation in the case of MSMs. With regard to a number of properties such as shape recovery ratio, manufacturability, cost or programming potential, MSMs and MSMPs may exceed conventional shape memory materials such as shape memory alloys or shape memory polymers. Nevertheless, MSMs and MSMPs have not yet fully touched their scientific-industrial potential, basically due to the lack of detailed knowledge on various aspects of their constitutive response. Therefore, MSMs and MSMPs have been developed slowly but their importance will undoubtedly increase in the near future. This review emphasizes the development of MSMs and MSMPs with a specific focus on the role of the magnetic particles which affect the shape memory recovery and programming behavior of these materials. In addition, the synthesis and application of these materials are addressed.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050014 ◽  
Author(s):  
Rong Huang ◽  
Shoujing Zheng ◽  
Zishun Liu ◽  
Teng Yong Ng

Hydrogels and shape memory polymers (SMPs) possess excellent and interesting properties that may be harnessed for future applications. However, this is not achievable if their mechanical behaviors are not well understood. This paper aims to discuss recent advances of the constitutive models of hydrogels and SMPs, in particular the theories associated with their deformations. On the one hand, constitutive models of six main types of hydrogels are introduced, the categorization of which is defined by the type of stimulus. On the other hand, constitutive models of thermal-induced SMPs are discussed and classified into three main categories, namely, rheological models; phase transition models; and models combining viscoelasticity and phase transition, respectively. Another feature in this paper is a summary of the common hyperelastic models, which can be potentially developed into the constitutive models of hydrogels and SMPs. In addition, the main advantages and disadvantages of these constitutive modes are discussed. In order to provide a compass for researchers involved in the study of mechanics of soft materials, some research gaps and new research directions for hydrogels and SMPs constitutive modes are presented. We hope that this paper can serve as a reference for future hydrogel and SMP studies.


2018 ◽  
Vol 10 (27) ◽  
pp. 23369-23379 ◽  
Author(s):  
Yao Huang ◽  
Leping Deng ◽  
Pengfei Ju ◽  
Luyao Huang ◽  
Hongchang Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document