scholarly journals The role of regulatory T cells and anti-inflammatory cytokines in psoriasis

Author(s):  
Agnieszka Owczarczyk-Saczonek ◽  
Joanna Czerwińska ◽  
Waldemar Placek
2005 ◽  
Vol 11 (3) ◽  
pp. 349-359 ◽  
Author(s):  
Hans HLP van den Broek ◽  
Jan GMC Damoiseaux ◽  
Marc H De Baets ◽  
Raymond MM Hupperts

The female predominance of multiple sclerosis (MS) has suggested that hormonal differences between the sexes must confer some protective effect on males or enhance the susceptibility of females to this disease. There has been evidence that gonadal hormones can modulate the immune response regulated by antigen presenting cells and T cells. These cells control the immune response by the production of interacting pro- and anti-inflammatory cytokines. The first include the acute phase pro-inflammatory cytokines of the innate immune response as well as the T-helper 1 (Th1) cytokines, while the later contain the Th2 cytokines as well as the suppressor cytokines. There is some evidence that MS and experimental autoimmune encephalitis (EAE) are Th1 cell-mediated diseases. For this reason many studies have been done to influence the pro-inflammatory cytokine production of these Th1 cells in favour of an anti-inflammatory immune response as mediated by Th2 cells. However the role of the regulatory T cells in this context is not clearly understood. Here we review the studies concerning the role of sex hormones on the cytokine production in relation to the disease course of MS and EAE and in particular in the light of the recent revival of the regulatory T cells and their suppressive cytokines.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Ekaterina Koltsova ◽  
Gisen Kim ◽  
Sibylle von Vietinghoff ◽  
Mitchell Kronenberg ◽  
Klaus Ley

Atherosclerosis is chronic inflammatory disease, which affects blood vessels. While the pro-atherogenic role of various inflammatory cytokines was broadly investigated, less is known about contribution of anti-inflammatory cytokines with regard to their ability to control inflammation in vivo. Interleukin 27 (IL-27) was shown to play immunosuppressive function via multiple mechanisms. We tested whether IL-27 signaling is important to restrain inflammation in mouse models of atherosclerosis. We transplanted bone marrow from Il27ra -/- or Il27ra +/+ mice into atherosclerosis prone Ldlr -/- littermates. Recipients of Il27ra -/- marrow showed significantly larger atherosclerotic lesions in aortic roots, aortic arches and, most strikingly, in the abdominal aorta. Aortas contained more CD45 + leukocytes and CD4 + T cells, which produced pro-atherogenic cytokines IL-17A and TNF-α. Concomitantly, the levels of IL-17A and IL-6 were significantly elevated in aortic tissue. These cytokines normally suppressed by IL-27, regulated the expression of CCL2 and other chemokines, which in turn led to accumulation of myeloid CD11b + and CD11c + cells in aortas, atherosclerotic plaque growth and disease progression. Moreover, using our recently developed live imaging by two-photon microscopy, we found enhanced interaction between antigen presenting cells and T cells in the arterial wall of Il27ra deficient mice. Overall, IL-27 signaling in bone marrow-derived cells regulates atherosclerosis by controlling interaction of antigen presenting cells and T cells in the arterial wall and therefore curbing Th17 and Th1 lineage differentiation, TNF and IL-17 dependent chemokine expression and subsequent myeloid cell accumulation. Thus, our work establishes the importance of anti-inflammatory cytokine signaling in atherosclerosis and demonstrates novel anti-atherogenic role of IL-27.


2008 ◽  
Vol 6 (1) ◽  
pp. 88-88 ◽  
Author(s):  
Jagadeesh Bayry ◽  
Darren R. Flower ◽  
David F. Tough ◽  
Srini V. Kaveri

2020 ◽  
Vol 21 (17) ◽  
pp. 6310
Author(s):  
Aline Yen Ling Wang ◽  
Charles Yuen Yung Loh ◽  
Hsin-Hsin Shen ◽  
Sing-Ying Hsieh ◽  
Ing-Kae Wang ◽  
...  

The acceleration of peripheral nerve regeneration is crucial for functional nerve recovery. Our previous study demonstrated that human Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSC) promote sciatic nerve recovery and regeneration via the direct upregulation and release of neurotrophic factors. However, the immunomodulatory role of hWJ-MSC in sciatic nerve recovery remains unclear. The effects of hWJ-MSC on innate immunity, represented by macrophages, natural killer cells, and dendritic cells, as well as on adaptive immunity, represented by CD4+ T, CD8+ T, B, and regulatory T cells (Tregs), were examined using flow cytometry. Interestingly, a significantly increased level of Tregs was detected in blood, lymph nodes (LNs), and nerve-infiltrating cells on POD7, 15, 21, and 35. Anti-inflammatory cytokines, such as IL-4 and IL-10, were significantly upregulated in the LNs and nerves of hWJ-MSC-treated mice. Treg depletion neutralized the improved effects of hWJ-MSC on sciatic nerve recovery. In contrast, Treg administration promoted the functional recovery of five-toe spread and gait stance. hWJ-MSC also expressed high levels of the anti-inflammatory cytokines TGF-β and IL-35. This study indicated that hWJ-MSC induce Treg development to modulate the balance between pro- and anti-inflammation at the injured sciatic nerve by secreting higher levels of anti-inflammatory cytokines.


Sign in / Sign up

Export Citation Format

Share Document