scholarly journals Use of non-linear dinamics methods for researching network traffic behaviour of high-speed networks

2014 ◽  
Vol 5 (9(71)) ◽  
pp. 46
Author(s):  
Александр Владимирович Карпухин ◽  
Дмитрий Игоревич Грицив ◽  
Александр Анатольевич Ткаченко
2014 ◽  
Vol 32 (10) ◽  
pp. 1849-1863 ◽  
Author(s):  
Antonis Papadogiannakis ◽  
Michalis Polychronakis ◽  
Evangelos P. Markatos

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2092
Author(s):  
Xiansong He ◽  
Wangqing Wu

This paper was aimed at finding out the solution to the problem of insufficient dimensional accuracy caused by non-linear shrinkage deformation during injection molding of small module plastic gears. A practical numerical approach was proposed to characterize the non-linear shrinkage and optimize the dimensional deviation of the small module plastic gears. Specifically, Moldflow analysis was applied to visually simulate the shrinkage process of small module plastic gears during injection molding. A 3D shrinkage gear model was obtained and exported to compare with the designed gear model. After analyzing the non-linear shrinkage characteristics, the dimensional deviation of the addendum circle diameter and root circle diameter was investigated by orthogonal experiments. In the end, a high-speed cooling concept for the mold plate and the gear cavity was proposed to optimize the dimensional deviation. It was confirmed that the cooling rate is the most influential factor on the non-linear shrinkage of the injection-molded small module plastic gears. The dimensional deviation of the addendum circle diameter and the root circle diameter can be reduced by 22.79% and 22.99% with the proposed high-speed cooling concept, respectively.


2021 ◽  
pp. 1-1
Author(s):  
Boyu Zhang ◽  
Yu-E Sun ◽  
Yang Du ◽  
He Huang ◽  
Guoju Gao ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1871
Author(s):  
Xinlu Yu ◽  
Yingqian Fu ◽  
Xinlong Dong ◽  
Fenghua Zhou ◽  
Jianguo Ning

The dynamic constitutive behaviors of concrete-like materials are of vital importance for structure designing under impact loading conditions. This study proposes a new method to evaluate the constitutive behaviors of ordinary concrete at high strain rates. The proposed method combines the Lagrangian-inverse analysis method with optical techniques (ultra-high-speed camera and digital image correlation techniques). The proposed method is validated against finite-element simulation. Spalling tests were conducted on concretes where optical techniques were employed to obtain the high-frequency spatial and temporal displacement data. We then obtained stress–strain curves of concrete by applying the proposed method on the results of spalling tests. The results show non-linear constitutive behaviors in these stress–strain curves. These non-linear constitutive behaviors can be possibly explained by local heterogeneity of concrete. The proposed method provides an alternative mean to access the dynamic constitutive behaviors which can help future structure designing of concrete-like materials.


Sign in / Sign up

Export Citation Format

Share Document