scholarly journals Optimal Placement of Non-Site Specific DG for Voltage Profile Improvement and Energy Savings in Radial Distribution Networks

Author(s):  
Mudathir Akorede ◽  
Edris Pouresmaeil ◽  
Hashim Hizam ◽  
Ishak Aris ◽  
Mohd Zainal Ab-Kadir
2021 ◽  
Vol 11 (24) ◽  
pp. 11840
Author(s):  
Muhammad Bilal ◽  
Mohsin Shahzad ◽  
Muhammad Arif ◽  
Barkat Ullah ◽  
Suhaila Badarol Hisham ◽  
...  

Increasing power demand from passive distribution networks has led to deteriorated voltage profiles and increased line flows. This has increased the annual operations and installation costs due to unavoidable reinforcement equipment. This work proposes the reduction in annual costs by optimal placement of capacitors used to alleviate power loss in radial distribution networks (RDNs). The optimization objective function is formulated for the reduction in operation costs by (i) reducing the active and reactive power losses, and (ii) the cost and installation of capacitors, necessary to provide the reactive power support and maintain the voltage profile. Initially, the network buses are ranked according to two loss sensitivity indices (LSIs), i.e., active loss sensitivity with respect to node voltage (LSI1) and reactive power injection (LSI2). The sorted bus list is then fed to the particle swarm optimization (PSO) for solving the objective function. The efficacy of the proposed work is tested on different IEEE standard networks (34 and 85 nodes) for different use cases and load conditions. In use case 1, the values finalized by the algorithm are selected without considering their market availability, whereas in use case 2, market-available capacitor sizes close to the optimal solution are selected. Furthermore, the static and seasonal load profiles are considered. The results are compared with recent methods and have shown significant improvement in terms of annual cost, losses and line flows reduction, and voltage profile.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-28
Author(s):  
Tri Phuoc Nguyen ◽  
Tuan Trong Nguyen ◽  
Trung Hieu Quang ◽  
Dieu Ngoc Vo ◽  
Mohammad Hassan Khooban

This paper proposes a novel hybrid algorithm based on a combination of the simple quadratic interpolation and the symbiosis organisms search algorithm (SQI-SOS) for finding the optimal location and size of capacitors in radial distribution networks. The objective of the problem is to minimize the system operating cost so that the net yearly savings of the system are increased. The effectiveness of the SQI-SOS has been tested on 33-, 69-, and 119-bus radial distribution networks with different load models. The obtained results from the test system by the proposed SQI-SOS are compared with those from the conventional SOS and other mature optimization methods in the literature. The result comparison has shown that the proposed SQI-SOS algorithm can provide a better solution than the other methods. Accordingly, the proposed SQI-SOS can be a very effective and efficient method for dealing with the optimal capacitor placement problem in distribution networks.


Author(s):  
M.A. Abdelkader ◽  
Mostafa A. Elshahed ◽  
Zeinab H. Osman

Due to the rapid increase in electricity consumption, there is a tendency to install distributed generations (DGs) at the level of distribution systems. Therefore, the distribution systems become active, and special load flow methods have to be developed and applied due to its radial structure and the relatively high ratio of resistance to reactance components. This paper presents a new forward algorithm for balanced three-phase load-flow analysis of radial distribution networks (RDNs). Kirchhoff’s Current Law and Kirchhoff’s Voltage Law are utilized. However, a new arrangement of these equations is presented based on formation of virtual slack buses and subsystems truncated from the original network during iteration. The proposed algorithm firstly applied on three IEEE benchmark RDNs with different cases such as different load models, various loading levels to illustrate the convergence even high loading, and inserted DGs,; then it is applied on a real system in Egypt. Its high convergence rate is tested for the DG optimization problem. Further, the virtual subsystems can be utilized to recognize quickly the effect of load changes on the bus voltage profile. The results show that the proposed algorithm is more accurate, not sensitive to initial value, simple equations are used, and robust with high convergence rate because of employing the updated bus voltages immediately after determining their value.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Khalid Mohammed Saffer Alzaidi ◽  
Oguz Bayat ◽  
Osman N. Uçan

Distributed generators (DGs) are currently extensively used to reduce power losses and voltage deviations in distribution networks. The optimal location and size of DGs achieve the best results. This study presents a novel hybridization of new metaheuristic optimizations in the last two years, namely, salp swarm algorithm (SSA) and whale optimization algorithm (WOA), for optimal placement and size of multi-DG units in radial distribution systems to minimize total real power losses (kW) and solve voltage deviation. This hybrid algorithm is implemented on IEEE 13- and 123-node radial distribution test systems. The OpenDSS engine is used to solve the power flow to find the power system parameters, such power losses, and the voltage profile through the MATLAB coding interface. Results describe the effectiveness of the proposed hybrid WOA-SSA algorithm compared with those of the IEEE standard case (without DG), repeated load flow method, and WOA and SSA algorithms applied independently. The analysis results via the proposed algorithm are more effective for reducing total active power losses and enhancing the voltage profile for various distribution networks and multi-DG units.


Sign in / Sign up

Export Citation Format

Share Document