scholarly journals A Transconductance-Mode Multifunction Filter with High Input and High Output Impedance Nodes Using Voltage Differencing Current Conveyors (VDCCs)

Author(s):  
Montree Siripruchyanun ◽  
Winai Jaikla
2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Hua-Pin Chen

This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.


2009 ◽  
Vol 18 (01) ◽  
pp. 31-43 ◽  
Author(s):  
SHAHRAM MINAEI ◽  
ERKAN YUCE

In this paper, a new current-mode (CM) all-pass filter employing two Dual-Output Second-Generation Current Conveyors (DO–CCIIs), one grounded resistor and one grounded capacitor is presented. The proposed circuit exhibits low input impedance and high output impedance, which makes it suitable for cascading. Moreover, adding two extra resistors to the proposed circuit, a new gain-variable voltage-mode (VM) all-pass filter is obtained. A quadrature oscillator employing minimum number of grounded passive components is derived from the developed CM filter as an application of the first-order all-pass filter. Both of the proposed all-pass filters do not require matching of passive components. The effects of the parasitic impedances of the DO–CCIIs on the transfer function (TF) of the proposed CM filter as an example are investigated. In addition, the proposed CM all-pass filter and oscillator circuit are simulated using SPICE simulation program to confirm the theory.


Sign in / Sign up

Export Citation Format

Share Document