universal filter
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 54)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Danupat Duangmalai ◽  
Peerawut Suwanjan

In this research contribution, the electronically tunable first-order universal filter employing a single voltage differencing differential input buffered amplifier (VD-DIBA) (constructed from two commercially available integrated circuit (IC): the operational transconductance amplifier, IC number LT1228, and the differential voltage input buffer, IC number AD830), one capacitor and two resistors. The features of the designed first order universal filter are as follows. Three voltage-mode first-order functions, low-pass (LP), all-pass (AP) and high-pass (HP) responses are given. The natural frequency (𝜔0) of the presented configuration can be electronically adjusted by setting the DC bias current. Moreover, the voltage gain of the LP and HP filters can be controllable. The phase responses of an AP configuration can be varied from 00 to −1800 and 1800 to 00. The power supply voltages were set at ±5 𝑉. Verification of the theoretically described performances of the introduced electronically tunable universal filter was proved by the PSpice simulation and experiment.


Author(s):  
Soontorn Srisoontorn ◽  
Angkana Charoenmee ◽  
Suphaphorn Panikhom ◽  
Thitiporn Janda ◽  
Suttipong Fungdetch ◽  
...  

The reconfigurable of the differentiator and integrator based on current conveyor transconductance amplifiers (CCTAs) have been presented in this paper. The proposed configurations are provided with two CCTAs and grounded elements. The configurations can be operated in the differentiator and integrator by selecting external passive elements. The input and output currents have low and high impedances, respectively; therefore, the configurations can be cascaded without additional current buffer. The proposed configurations can be electronically tuned by external direct current (DC) bias currents, and it also has slight fluctuation with temperature. An application of universal filter is demonstrated to confirm the ability of the proposed configurations. The results of simulation with Pspice program are accordance with the theoretical analysis.


Author(s):  
May Phu Pwint Wai ◽  
Winai Jaikla ◽  
Surapong Siripongdee ◽  
Amornchai Chaichana ◽  
Peerawut Suwanjan

This study aims to design an electronically tunable voltage-mode (VM) universal filter utilizing commercially available LT1228 integrated circuits (ICs) with three-input and single-output (TISO) configuration. With the procedure based on two integrator loop filtering structures, the proposed filter consists of two LT1228s, four resistors, and two grounded capacitors. It realizes five filter output responses: low-pass, all-pass, band-reject, band-pass, and high-pass functions. By selecting input voltage signals, each output responses can be achieved without changing the circuit architecture. The natural angular frequency can be controlled electronically. The input voltage nodes Vin1 and Vin3 possess high impedance. The output node has low impedance, so it can be cascaded to other circuits. The performance of the proposed filter is corroborated by PSpice simulation and hardware implementation which support the theoretical assumptions. The result shows that the range of total harmonic distortion (THD) is lower than 1%, and that the higher the temperature is, the lower the natural angular frequency is.


2021 ◽  
Vol 25 (2) ◽  
pp. 65-76
Author(s):  
Tajinder Singh Arora ◽  

This research article explores the possible applications of voltage differencing current conveyor (VDCC), as a current mode universal filter and a sinusoidal oscillator. Without the need for an additional active/passive element, a very simple hardware modification makes it a dual-mode quadrature oscillator from the filter configuration. Both the proposed circuit requires only two VDCC and all grounded passive elements, hence a preferable choice for integration. The filter has some desirable features such as availability of all five explicit outputs, independent tunability of filter parameters. Availability of explicit quadrature current outputs, independence in start and frequency of oscillations, makes it a better oscillator design. Apart from prevalent CMOS simulation results, VDCC is also realized and experimentally tested using the off-the-shelf integrated circuit. All the pen and paper analysis such as non-ideal, sensitivity and parasitic analysis supports the design.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Faseehuddin ◽  
Norbert Herencsar ◽  
Musa Ali Albrni ◽  
Sadia Shireen ◽  
Jahariah Sampe

Abstract Purpose This paper aims to achieve two main objectives. First, to introduce to the literature a new versatile active building block, namely, voltage differencing differential voltage current conveyor (VD-DVCC) for analog signal processing applications. Second, to design a novel electronically tunable mixed-mode universal filter. The designed filter provides low-pass, high-pass, band-pass, band-reject and all-pass responses in voltage-mode (VM), current-mode (CM), trans-impedance-mode (TIM) and trans-admittance-mode (TAM). Design/methodology/approach The proposed filter uses two VD-DVCCs, three resistors and two capacitors. All the capacitors used are grounded, which is advantageous from the monolithic integration point of view. The VD-DVCC is designed and validated in Cadence software using CMOS 0.18 µm process design kit from Silterra Malaysia at a supply voltage of ±1 V. Findings The proposed novel filter enjoys many attractive features including as follows: the ability to operate in all four modes, no requirement of capacitive matching, tunability of quality factor (Q) independent of pole frequency, availability of both inverting and non-inverting outputs for VM and TIM mode, high output impedance explicit current output for CM and TAM, no requirement for double/negative input signals (voltage/current) for response realization and low active and passive sensitivities. The filter is designed for a pole frequency of 5.305 MHz. The obtained results bear a close resemblance with the theoretical findings. Originality/value The proposed novel filter structure requires a minimum number of active and passive components and provides operation in all four operating modes. The filter will find application in structures of mixed-mode systems.


Sign in / Sign up

Export Citation Format

Share Document