scholarly journals LOCALIZATION BASED RANGE MAP STITCHING IN WIRELESS SENSOR NETWORK UNDER NON-LINE-OF-SIGHT ENVIRONMENTS

2014 ◽  
Vol 03 (05) ◽  
pp. 248-252
Author(s):  
R.Divya .
2016 ◽  
Vol 10 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Hao Chu ◽  
Cheng-dong Wu

The wireless sensor network (WSN) has received increasing attention since it has many potential applications such as the internet of things and smart city. The localization technology is critical for the application of the WSN. The obstacles induce the larger non-line of sight (NLOS) error and it may decrease the localization accuracy. In this paper, we mainly investigate the non-line of sight localization problem for WSN. Firstly, the Pearson's chi-squared testing is employed to identify the propagation condition. Secondly, the particle swarm optimization based localization method is proposed to estimate the position of unknown node. Finally the simulation experiments are implemented. The simulation results show that the proposed method owns higher localization accuracy when compared with other two methods.


2019 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Long Cheng ◽  
Mingkun Xue ◽  
Ze Liu ◽  
Yong Wang

As one of the core technologies of the Internet of Things, wireless sensor network technology is widely used in indoor localization systems. Considering that sensors can be deployed to non-line-of-sight (NLOS) environments to collect information, wireless sensor network technology is used to locate positions in complex NLOS environments to meet the growing positioning needs of people. In this paper, we propose a novel time of arrival (TOA)-based localization scheme. We regard the line-of-sight (LOS) environment and non-line-of-sight environment in wireless positioning as a Markov process with two interactive models. In the NLOS model, we propose a modified probabilistic data association (MPDA) algorithm to reduce the NLOS errors in position estimation. After the NLOS recognition, if the number of correct positions is zero continuously, it will lead to inaccurate localization. In this paper, the NLOS tracer method is proposed to solve this problem to improve the robustness of the probabilistic data association algorithm. The simulation and experimental results show that the proposed algorithm can mitigate the influence of NLOS errors and achieve a higher localization accuracy when compared with the existing methods.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2348 ◽  
Author(s):  
Yan Wang ◽  
Jinquan Hang ◽  
Long Cheng ◽  
Chen Li ◽  
Xin Song

In recent years, the rapid development of microelectronics, wireless communications, and electro-mechanical systems has occurred. The wireless sensor network (WSN) has been widely used in many applications. The localization of a mobile node is one of the key technologies for WSN. Among the factors that would affect the accuracy of mobile localization, non-line of sight (NLOS) propagation caused by a complicated environment plays a vital role. In this paper, we present a hierarchical voting based mixed filter (HVMF) localization method for a mobile node in a mixed line of sight (LOS) and NLOS environment. We firstly propose a condition detection and distance correction algorithm based on hierarchical voting. Then, a mixed square root unscented Kalman filter (SRUKF) and a particle filter (PF) are used to filter the larger measurement error. Finally, the filtered results are subjected to convex optimization and the maximum likelihood estimation to estimate the position of the mobile node. The proposed method does not require prior information about the statistical properties of the NLOS errors and operates in a 2D scenario. It can be applied to time of arrival (TOA), time difference of arrival (TDOA), received signal (RSS), and other measurement methods. The simulation results show that the HVMF algorithm can efficiently reduce the effect of NLOS errors and can achieve higher localization accuracy than the Kalman filter and PF. The proposed algorithm is robust to the NLOS errors.


Sign in / Sign up

Export Citation Format

Share Document