scholarly journals Two Higgs singlets \(A_4\) Flavor Symmetry with Minimal Breaking

2014 ◽  
Vol 24 (2) ◽  
pp. 113 ◽  
Author(s):  
Nguyen Thanh Phong

We study the seesaw realization of a \(A_4\)model with two Higgs singlets. In this model, the mixing angle \(\theta_{13}\) and leptogenesis are zero if the components of right handed neutrino mass matrix resulting from the two Higgs singlets are exact degenerate. We then study the minimal breaking of the model by a tiny shift between aforementioned components. This minimal breaking results in deviations of lepton mixing angles from their tri-bimaximal mixing values in which the current experimental value of \(\theta_{13}\) can be achieved. Besides, the baryon asymmetry of the Universe is successfully generated through non-zero leptogenesis by the decay of right handed neutrinos.

2014 ◽  
Vol 29 (22) ◽  
pp. 1450108 ◽  
Author(s):  
Debasish Borah

We discuss the possible origin of nonzero reactor mixing angle θ13 and Dirac CP phase δ CP in the leptonic sector from a combination of type I and type II seesaw mechanisms. Type I seesaw contribution to neutrino mass matrix is of tri-bimaximal (TBM) type which gives rise to vanishing θ13 leaving the Dirac CP phase undetermined. If the Dirac neutrino mass matrix is assumed to take the diagonal charged lepton (CL) type structure, such a TBM type neutrino mass matrix originating from type I seesaw corresponds to real values of Dirac Yukawa couplings in the terms [Formula: see text]. This makes the process of right-handed heavy neutrino decay into a light neutrino and Higgs (N → νH) CP preserving ruling out the possibility of leptogenesis. Here we consider the type II seesaw term as the common origin of nonzero θ13 and δ CP by taking it as a perturbation to the leading order TBM type neutrino mass matrix. First, we numerically fit the type I seesaw term by taking oscillation as well as cosmology data and then compute the predictions for neutrino parameters after the type II seesaw term is introduced. We consider a minimal structure of the type II seesaw term and check whether the predictions for neutrino parameters lie in the 3σ range. We also compute the predictions for baryon asymmetry of the universe by considering type II seesaw term as the only source of CP violation and compare it with the latest cosmology data.


2015 ◽  
Vol 30 (09) ◽  
pp. 1550045 ◽  
Author(s):  
Rupam Kalita ◽  
Debasish Borah

We study the possibility of connecting leptonic Dirac CP phase δ, lightest neutrino mass and baryon asymmetry of the universe within the framework of a model where both type I and type II seesaw mechanisms contribute to neutrino mass. Type I seesaw gives rise to Tri-Bimaximal (TBM) type neutrino mixing whereas type II seesaw acts as a correction in order to generate nonzero θ13. We derive the most general form of type II seesaw mass matrix which cannot only give rise to correct neutrino mixing angles but also can generate nontrivial value of δ. Considering both the cases where type II seesaw is subleading and is equally dominant compared to type I seesaw, we correlate the type II seesaw term with δ and lightest neutrino mass. We further constrain the Dirac CP phase δ and hence the type II seesaw mass matrix from the requirement of producing the observed baryon asymmetry through the mechanism of leptogenesis.


2006 ◽  
Vol 21 (13) ◽  
pp. 1067-1073 ◽  
Author(s):  
AMBAR GHOSAL ◽  
DEBASISH MAJUMDAR

We demonstrate that "Bimaximal + Democratic" type neutrino mass matrix can accommodate the deviation of θ⊙ from its maximal value along with the other present-day neutrino experimental results, namely, atmospheric, CHOOZ, neutrinoless double beta decay (ββ0ν) and result obtained from WMAP experiment. We define a function χp in terms of solar and atmospheric neutrino mass squared differences and solar neutrino mixing angle (obtained from different experiments and our proposed texture). The masses and mixing angles are expressed in terms of three parameters in our proposed texture. The allowed region of the texture parameters is obtained through minimization of the above function. The proposed texture crucially depends on the value of the experimental results of ββ0ν experiment among all other above-mentioned experiments. If, in future, ββ0ν experiments, namely, MOON, EXO, GENIUS shift the lower bound on 〈mee〉 at the higher side by one order, the present texture will be ruled out.


2010 ◽  
Vol 25 (33) ◽  
pp. 2837-2848 ◽  
Author(s):  
S. DEV ◽  
SURENDER VERMA

We investigate the CP asymmetry for a hybrid texture of the neutrino mass matrix predicted by Q8 family symmetry in the context of the type-I seesaw mechanism and examine its consequences for leptogenesis. We, also, calculate the resulting Baryon Asymmetry of the Universe (BAU) for this texture.


2012 ◽  
Vol 27 (26) ◽  
pp. 1250151 ◽  
Author(s):  
H. B. BENAOUM

Recent experiments indicate a departure from the exact tri-bimaximal mixing by measure ring definitive nonzero value of θ13. Within the framework of type I seesaw mechanism, we reconstruct the triangular Dirac neutrino mass matrix from the μ - τ symmetric mass matrix. The deviation from μ - τ symmetry is then parametrized by adding dimensionless parameters yi in the triangular mass matrix. In this parametrization of the neutrino mass matrix, the nonzero value θ13 is controlled by Δy = y4 - y6. We also calculate the resulting leptogenesis and show that the triangular texture can generate the observed baryon asymmetry in the universe via leptogenesis scenario.


2014 ◽  
Vol 29 (33) ◽  
pp. 1450179
Author(s):  
G. K. Leontaris ◽  
N. D. Vlachos

We investigate the possibility of expressing the charged leptons and neutrino mass matrices as linear combinations of elements of a single finite group. Constraints imposed on the resulting mixing matrix by current data restrict the group types, but allow a nonzero value for the θ13 mixing angle.


Sign in / Sign up

Export Citation Format

Share Document