scholarly journals Optical Property and Photoelectrical Performance of a Low-bandgap Conducting Polymer Incorporated with Quantum Dots Used for Organic Solar Cells

2015 ◽  
Vol 25 (2) ◽  
pp. 139
Author(s):  
Tran Thi Thao ◽  
Vu Thi Hai ◽  
Nguyen Nang Dinh ◽  
Le Dinh Trong

By using spin-coating technique, a low bandgap conjugated polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopen-ta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT)  and its composite thin films have been prepared. The optical absorption and photoconductive properties with over a wide spectral range, from 350 to 950  nm, were characterized. The obtained results showed that PCPDTBT:10 wt% CdSe  composite is the most suitable for efficient light-harvesting in polymer-based photovoltaic cells. The photoelectrical conversion efficiency (PCE) of the device with  a multilayer structure of ITO/PEDOT/ PCPDTBT:CdSe /LiF/Al  reached a value as large as 1.34% with an open-circuit voltage (Voc) = 0.57 V, a short-circuit current density (Jsc) = 4.29 mA/cm2, and a fill factor (FF) = 0.27. This suggests a useful application in further fabrication of quantum dots/polymers based solar cells.

Author(s):  
Nur Shakina Mohd Shariff ◽  
Puteri Sarah Mohamad Saad ◽  
Mohamad Rusop Mahmood

There has been an increasing interest towards organic solar cells after the discovery of conjugated polymer and bulk-heterojunction concept. Eventhough organic solar cells are less expensive than inorganic solar cells but the power conversion energy is still considered low. The main objective of this research is to investigate the effect of the P3HT’s thickness and concentration towards the efficiency of the P3HT:Graphene solar cells. A simulation software that is specialize for photovoltaic called SCAPS is used in this research to simulate the effect on the solar cells. The solar cell’s structure will be drawn inside the simulation and the parameters for each layers is inserted. The result such as the open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), efficiency (η), capacitance-voltage (C-V) and capacitance-frequency (C-f) characteristic will be calculated by the software and all the results will be put into one graph.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhen Zhan ◽  
Jing Cao ◽  
Weiguang Xie ◽  
Lintao Hou ◽  
Qin Ye ◽  
...  

Vanadium pentoxideV2O5was inserted between the donor layer and the anode as a hole-extracting nanolayer. Compared with devices without a hole-extracting layer, short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE) of rubrene/C70-based heterojunction solar cells with 3 nm V2O5nanolayer are enhanced by 99%, 73%, 20%, and 310%, respectively. We found that V2O5interlayer can effectively suppress the contact resistance and increase the hole transport capability. The dependence of the device performance on V2O5layer thickness as well as fill factor on exciton dissociation and charge transport was also investigated in detail.


RSC Advances ◽  
2015 ◽  
Vol 5 (27) ◽  
pp. 20724-20733 ◽  
Author(s):  
Daobin Yang ◽  
Youqin Zhu ◽  
Yan Jiao ◽  
Lin Yang ◽  
Qianqian Yang ◽  
...  

N,N-Diarylamino end-capping strategy for asymmetrical squaraines with simultaneously enhanced Voc, Jsc and FF in solution-processed small molecule organic solar cells.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 450 ◽  
Author(s):  
Miron Krassas ◽  
Christos Polyzoidis ◽  
Pavlos Tzourmpakis ◽  
Dimitriοs M. Kosmidis ◽  
George Viskadouros ◽  
...  

A conjugated, ladder-type multi-fused ring 4,7-dithienbenzothiadiazole:thiophene derivative, named as compound ‘T’, was for the first time incorporated, within the PTB7:PC71BM photoactive layer for inverted ternary organic solar cells (TOSCs) realization. The effective energy level offset caused by compound T between the polymeric donor and fullerene acceptor materials, as well as its resulting potential as electron cascade material contribute to an enhanced exciton dissociation, electron transfer facilitator and thus improved overall photovoltaic performance. The engineering optimization of the inverted TOSC, ITO/PFN/PTB7:Compound T(5% v/v):PC71BM/MoO3/Al, resulted in an overall power conversion efficiency (PCE) of 8.34%, with a short-circuit current density (Jsc) of 16.75 mA cm−2, open-circuit voltage (Voc) of 0.74 V and a fill factor (FF) of 68.1%, under AM1.5G illumination. This photovoltaic performance was improved by approximately 12% with respect to the control binary device.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 803-807
Author(s):  
T. S. KRISHNAN ◽  
S. SUNDAR KUMAR IYER

This work addresses the shelf life characteristics of P3HT: PCBM blend based organic solar cells (OSC) fabricated with Ca–Al and LiF–Al cathodes. Some of these devices are encapsulated in nitrogen ambient and some in room ambient. Device electrical characteristics are studied under both dark and light. In the analysis under dark ambient conditions, the degradation in peak dark current is monitored over time (in days) and an empirical model is postulated for the degradation based on statistical curve fitting techniques. In the analysis under light, degradation of parameters such as fill factor (FF), open circuit voltage (V oc ) and short circuit current density (J sc ) is monitored over time in these devices (for different cathodes and different ambients) and the results are analyzed and compared. Also, accelerated stress tests are conducted wherein the devices are subjected to continuous illumination for a period of 1.5 h under two different intensities (0.76 sun and 1 sun) and again, the results are analyzed and compared. A model is fitted to the observed degradation in normalized J sc and the degradation constants (k deg ) are obtained. It is seen that the devices fabricated with cathode as LiF–Al and being encapsulated in nitrogen ambient provide the best performance over time.


2015 ◽  
Vol 22 (06) ◽  
pp. 1550072
Author(s):  
SUDIP ADHIKARI ◽  
HIDEO UCHIDA ◽  
MASAYOSHI UMENO

In this paper, composite carbon nanotubes (C-CNTs); single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) are synthesized using an ultrasonic nebulizer in a large quartz tube for photovoltaic device fabrication in poly-3-octyl-thiophene (P3OT)/ n - Si heterojunction solar cells. We found that the device fabricated with C-CNTs shows much better photovoltaic performance than that of a device without C-CNTs. The device with C-CNTs shows open-circuit voltage (Voc) of 0.454 V, a short circuit current density (Jsc) of 12.792 mA/cm2, fill factor (FF) of 0.361 and power conversion efficiency of 2.098 %. Here, we proposed that SWCNTs and MWCNTs provide efficient percolation paths for both electron and hole transportation to opposite electrodes and leading to the suppression of charge carrier recombination, thereby increasing the photovoltaic device performance.


2011 ◽  
Vol 23 (40) ◽  
pp. 4636-4643 ◽  
Author(s):  
Zhicai He ◽  
Chengmei Zhong ◽  
Xun Huang ◽  
Wai-Yeung Wong ◽  
Hongbin Wu ◽  
...  

2015 ◽  
Vol 761 ◽  
pp. 341-346 ◽  
Author(s):  
Ahmad Aizan Zulkefle ◽  
Maslan Zainon ◽  
Zaihasraf Zakaria ◽  
Mohd Ariff Mat Hanafiah ◽  
Nurul Huda Abdul Razak ◽  
...  

This paper presents the performance between silicon germanium (SiGe) and crystalline germanium (Ge) solar cells in terms of their simulated open circuit voltage, short circuit current density, fill factor and efficiency. The PC1D solar cell modeling software has been used to simulate and analyze the performance for both solar cells, and the total thickness is limited to 1μm of both SiGe and Ge solar cells. The Si0.1Ge0.9 thickness is varied from 10nm to 100nm to examine the effect of Si0.1Ge0.9 thickness on SiGe solar cell. The result of simulation exhibits the SiGe solar cell give a better performance compared to Ge solar cell. The efficiency of 9.74% (VOC = 0.48V, JSC = 27.86mA/cm2, FF =0.73) is achieved with Si0.1Ge0.9 layer of 0.1μm in thickness whilst 2.73% (VOC = 0.20V, JSC = 27.31mA/cm2, FF =0.50) efficiency is obtained from Ge solar cell.


Author(s):  
Xiaosha Wang ◽  
Honggang Chen ◽  
Jun Yuan ◽  
Qingya Wei ◽  
Jing Li ◽  
...  

Three polymer donors named Qx-8F, Qx-10F, and Qx-12F, with similar chemical structures, was synthesized. The energy level of these donors is manipulated by precisely controlling the fluorination sites. We demonstrate...


Sign in / Sign up

Export Citation Format

Share Document