Initial Stability Measurements of Implants Using a New Magnetic Resonance Frequency Analyzer with Titanium Transducers: An Ex Vivo Study

2020 ◽  
pp. 0000-0000 ◽  
Author(s):  
Canan Bural ◽  
Cagatay Dayan ◽  
Onur Geckili

The establishment of stability of a dental implant is mandatory for successful osseointegration. Resonance frequency analysis (RFA) is the most frequently used method for the clinical measurement of implant stability. The purpose of the present study was to evaluate the reliability of the recently developed RF analyzer named as Penguin RFA and to compare it with the traditional RF analyzer Osstell ISQ. Sixty implants were inserted into fresh vertebrae and pelvis belonging to a steer. Implant stability was measured using Penguin RFA by its transducers (multipegs) and Osstell ISQ by its transducers (smartpegs). Additionally, stability was measured by multipegs with Osstell ISQ and by smartpegs with Penguin RFA. The intra-observer and inter-observer reliability of Penguin RFA were estimated by the intra-class coefficient (ICC). Mean implant stability quotients (ISQs) measured with Osstell ISQ were higher than the ISQs measured with Penguin RFA (P<.05). The intra- and inter-observer reliability of Penguin RFA were considered as excellent (ICC > 0.7). For Osstell ISQ, no significance in ISQs was detected between the readings by smartpegs and multipegs (P > .05) while for Penguin RFA ISQs by smartpegs were significantly higher than the ISQs by multipegs (P <.05). Recently developed Penguin RFA, is reliable and can be used in the clinical practice for the measurement of dental implant stability in regardless of the bone type. The multipegs originally manufactured for the Penguin RFA is also compatible with Osstell ISQ.

2019 ◽  
Vol 21 (5) ◽  
pp. 1028-1040
Author(s):  
Attakorn Charatchaiwanna ◽  
Thaned Rojsiraphisa ◽  
Weerapan Aunmeungtong ◽  
Peter A. Reichart ◽  
Pathawee Khongkhunthian

2007 ◽  
Vol 26 (5) ◽  
pp. 665-671 ◽  
Author(s):  
Wei-Jen CHANG ◽  
Sheng-Yang LEE ◽  
Chen-Che WU ◽  
Che-Tong LIN ◽  
Yoshimitsu ABIKO ◽  
...  

2019 ◽  
Vol 45 (3) ◽  
pp. 181-185 ◽  
Author(s):  
Cagatay Dayan ◽  
Onur Geckili ◽  
Canan Bural

The design of an implant has a great effect on primary stability. The purpose of this study was to determine the differences in primary stability between straight and tapered Neoss ProActive implants in type I and type III bones using resonance frequency analysis (RFA) and electronic percussive testing (EPT) methods. Fresh cow vertebrae and pelvis were used as models of type III and type i bone, respectively. Implants of 2 different designs—straight and tapered Neoss ProActive implants with a thread cutting and forming (TCF) design, both 3.5-mm wide and 11-mm long—were placed in both types of bone (n = 60). The primary stability of all implants was measured by an experienced clinician blinded to the study protocol using the EPT and RFA devices. No statistically significant difference was found between the implant stability quotients and the percussive test values of straight and tapered implants in either bone type. Within the limitations of this ex vivo study, it may be concluded that the shape of an implant with a TCF design does not affect primary stability.


Sign in / Sign up

Export Citation Format

Share Document