Resonance of a rotary machine support beam considering geometric stiffness

2020 ◽  
Vol 58 (4) ◽  
pp. 1023-1035
Author(s):  
Alexandre Wahrhaftig ◽  
Reyolando Brasil ◽  
Thiago Groba ◽  
Lauro Rocha ◽  
José Balthazar ◽  
...  
2003 ◽  
Vol 31 (3) ◽  
pp. 132-158 ◽  
Author(s):  
R. E. Okonieski ◽  
D. J. Moseley ◽  
K. Y. Cai

Abstract The influence of tread designs on tire performance is well known. The tire industry spends significant effort in the development process to create and refine tread patterns. Creating an aesthetic yet functional design requires characterization of the tread design using many engineering parameters such as stiffness, moments of inertia, principal angles, etc. The tread element stiffness is of particular interest because of its use to objectively determine differences between tread patterns as the designer refines the design to provide optimum levels of performance. The tread designer monitors the change in stiffness as the design evolves. Changes to the geometry involve many attributes including the number of sipes, sipe depth, sipe location, block element edge taper, nonskid depth, area net-to-gross, and so forth. In this paper, two different formulations for calculating tread element or block stiffness are reviewed and are compared to finite element results in a few cases. A few simple examples are shown demonstrating the basic functionality that is possible with a numerical method.


Author(s):  
N. N. Loy ◽  
S. N. Gulina

The effect of presowing seed treatment on various concentrations of dicarboxylic (organic) acids on the sowing characteristics of spring barley has been studied. Seeds were treated with organic acids obtained by exposing cuttings to the radiation with a dose of 100 kGy and consequent hydrolysis, in concentrations: 1•10-7 %; 1•10-9; 1•10-11; 1•10-13 and 1•10-15 % on a laboratory rotary machine RVO-64 for one day before laying for germination. Distilled water was used for the control case. The rate of application of the working solution calculated as 10 liters / ton of seeds. Seeds were germinated in filter paper rolls in accordance with GOST 12038-84 requirements. The temperature was maintained at +24 ° C in the thermostat where the glasses with rolls were placed. For determination of germinative power and laboratory germination the sprouted seeds were evaluated after three and seven days, respectively. In laboratory experiments it was established that the treatment of barley seeds of varieties Zazersky 85, Nur and Vladimir with organic acids (OK) in different concentrations had both a stimulating and a negative effect. On the Zazersky 85 variety, in variants with acid concentrations of 1•10-9 and 1•10-11, an increase in germination energy (EP) by 2-4% and a significant decrease (by 3-4%) of laboratory germination (LV) of barley seeds were noted. On the Nur variety, the increase in EP was observed at 4% (concentration 1•10-11), LV and seed growth force (CPC) by 2-7% at a concentration of 1•10-7 and in the dose range 1•10-11 - 1•10-14 compared to the control values. On the grade of Vladimir, an increase in EP, LV, and CPC was found to increase by 1-6% at concentrations OK 1•10-7 and 1•10-13. It was shown that the treatment of seeds with acids led to an increase in the length of the germ in all studied varieties (by 3-9%) and dry biomass of 7-day-old seedlings - by 3-6%. Consequently, the treatment of seeds with a mixture of dicarboxylic acids has a stimulating effect on the sowing quality of spring barley.


2021 ◽  
pp. 136943322098663
Author(s):  
Yi-Qun Tang ◽  
Wen-Feng Chen ◽  
Yao-Peng Liu ◽  
Siu-Lai Chan

Conventional co-rotational formulations for geometrically nonlinear analysis are based on the assumption that the finite element is only subjected to nodal loads and as a result, they are not accurate for the elements under distributed member loads. The magnitude and direction of member loads are treated as constant in the global coordinate system, but they are essentially varying in the local coordinate system for the element undergoing a large rigid body rotation, leading to the change of nodal moments at element ends. Thus, there is a need to improve the co-rotational formulations to allow for the effect. This paper proposes a new consistent co-rotational formulation for both Euler-Bernoulli and Timoshenko two-dimensional beam-column elements subjected to distributed member loads. It is found that the equivalent nodal moments are affected by the element geometric change and consequently contribute to a part of geometric stiffness matrix. From this study, the results of both eigenvalue buckling and second-order direct analyses will be significantly improved. Several examples are used to verify the proposed formulation with comparison of the traditional method, which demonstrate the accuracy and reliability of the proposed method in buckling analysis of frame structures under distributed member loads using a single element per member.


2021 ◽  
Vol 1823 (1) ◽  
pp. 012068
Author(s):  
Jayanti Putri Purwaningrum ◽  
Imaniar Purbasari ◽  
Gilang Puspita Rini ◽  
Nur Fajrie
Keyword(s):  

2012 ◽  
Vol 28 (1) ◽  
pp. 97-106 ◽  
Author(s):  
J. D. Yau ◽  
S.-R. Kuo

ABSTRACTUsing conventional virtual work method to derive geometric stiffness of a thin-walled beam element, researchers usually have to deal with nonlinear strains with high order terms and the induced moments caused by cross sectional stress results under rotations. To simplify the laborious procedure, this study decomposes an I-beam element into three narrow beam components in conjunction with geometrical hypothesis of rigid cross section. Then let us adopt Yanget al.'s simplified geometric stiffness matrix [kg]12×12of a rigid beam element as the basis of geometric stiffness of a narrow beam element. Finally, we can use rigid beam assemblage and stiffness transformation procedure to derivate the geometric stiffness matrix [kg]14×14of an I-beam element, in which two nodal warping deformations are included. From the derived [kg]14×14matrix, it can take into account the nature of various rotational moments, such as semi-tangential (ST) property for St. Venant torque and quasi-tangential (QT) property for both bending moment and warping torque. The applicability of the proposed [kg]14×14matrix to buckling problem and geometric nonlinear analysis of loaded I-shaped beam structures will be verified and compared with the results presented in existing literatures. Moreover, the post-buckling behavior of a centrally-load web-tapered I-beam with warping restraints will be investigated as well.


Sign in / Sign up

Export Citation Format

Share Document