scholarly journals EVALUATION OF LABEO CALBASU FISHERY STATUS USING SURPLUS PRODUCTION MODELS IN KAPTAI RESERVOIR, BANGLADESH

2019 ◽  
Vol 17 (2) ◽  
pp. 2519-2532 ◽  
Author(s):  
M H KHATUN ◽  
S T LUPA ◽  
M F RAHMAN ◽  
P P BARMAN ◽  
Q LIU
1989 ◽  
Vol 46 (1) ◽  
pp. 137-144 ◽  
Author(s):  
D. Ludwig ◽  
C. J. Walters

The problem of robust estimation of optimal effort levels from surplus production models is considered. A variety of models are used to generate data, for the purpose of testing estimation schemes. The result of an estimation is an estimate of the optimal effort. These efforts are compared using the expected discounted value of a deterministic stock, which corresponds to the model used to generate the data. Such a criterion takes into account not only the loss due to bias in the estimated optimal effort, but also the loss due to the variance of the estimator. Estimation is difficult if there is a lack of informative variation in effort levels or stock sizes. In such cases, the estimation scheme which maximizes the criterion described above sacrifices realism in the representation of the stock-production relationship in order to reduce the variance of the estimate of optimal effort. We present a composite estimation scheme which performs acceptably in all the cases we have examined, and whose performance degrades slowly as the amount of information in the data decreases.


2006 ◽  
Vol 63 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Jon T. Schnute ◽  
Rowan Haigh

Abstract Fisheries management often relies heavily on precautionary reference points estimated from complex statistical models. An alternative approach uses management strategies defined by mathematical algorithms that calculate controls, like catch quotas, directly from the observed data. We combine these two distinct paradigms into a common framework using arguments from the historical development of quantum mechanics. In fisheries, as in physics, the core of the argument lies in the technical details. We illustrate the process of designing a management algorithm similar to one actually used by the International Whaling Commission. Reference points and surplus production models play a conceptual role in defining management strategies, even if marine populations do not obey such simplistic rules. Physicists have encountered similar problems in formulating quantum theory, where mathematical objects with seemingly unrealistic properties generate results of great practical importance.


2022 ◽  
Vol 10 (1) ◽  
pp. 63
Author(s):  
Partho Protim Barman ◽  
Md. Mostafa Shamsuzzaman ◽  
Petra Schneider ◽  
Mohammad Mojibul Hoque Mozumder ◽  
Qun Liu

This research evaluated fisheries reference points and stock status to assess the sustainability of the croaker fishery (Sciaenidae) from the Bay of Bengal (BoB), Bangladesh. Sixteen years (2001–2016) of catch-effort data were analyzed using two surplus production models (Schaefer and Fox), the Monte Carlo method (CMSY) and the Bayesian state-space Schaefer surplus production model (BSM) method. This research applies a Stock–Production Model Incorporating Covariates (ASPIC) software package to run the Schaefer and Fox model. The maximum sustainable yield (MSY) produced by all models ranged from 33,900 to 35,900 metric tons (mt), which is very close to last year’s catch (33,768 mt in 2016). The estimated B > BMSY and F < FMSY indicated the safe biomass and fishing status. The calculated F/FMSY was 0.89, 0.87, and 0.81, and B/BMSY was 1.05, 1.07, and 1.14 for Fox, Schaefer, and BSM, respectively, indicating the fully exploited status of croaker stock in the BoB, Bangladesh. The representation of the Kobe phase plot suggested that the exploitation of croaker stock started from the yellow (unsustainable) quadrant in 2001 and gradually moved to the green (sustainable) quadrant in 2016 because of the reduction in fishing efforts and safe fishing pressure after 2012. Thus, this research suggests that the current fishing pressure needs to be maintained so that the yearly catch does not exceed the MSY limit of croaker. Additionally, specific management measures should implement to guarantee croaker and other fisheries from the BoB.


Author(s):  
Jon T. Schnute ◽  
Laura J. Richards

Science ◽  
2019 ◽  
Vol 365 (6454) ◽  
pp. eaax5721 ◽  
Author(s):  
Cody Szuwalski

Free et al. (Reports, 1 March 2019, p. 979) linked sea surface temperature (SST) to surplus production and estimated a 4% decline in maximum sustainable yield (MSY) since 1930. Changes in MSY are expected when fitting production models to age-structured data, so attributing observed changes to SST is problematic. Analyses of recruitment (a metric of productivity in the same database) showed increases in global productivity.


Sign in / Sign up

Export Citation Format

Share Document