scholarly journals ANALYSIS OF URBAN LANDSCAPE PATTERN AND ECOENVIRONMENT BENEFIT BASED ON HEAT ISLAND EFFECT – WITH BEIJING, CHINA AS AN EXAMPLE

Author(s):  
L J LEI
2012 ◽  
Vol 178-181 ◽  
pp. 300-303
Author(s):  
Zhong Zhong Zeng ◽  
Hai Shan Xia

Problems caused by urbanization such as inadequate water content in urban foundation, ecological unbalance in the soil and heat island effect, have become issues that people pay great attention to. Two projects, cited as being successful in integrating urban landscape planning and wetland ecology, are the Water Garden in Portland, USA, and the Living Water Garden in Chengdu, China. Artificial wetland is effective to establish urban ecology. It may not only solve the problem of urban water crisis, but also bring a series of good eco- environmental effects, such as to conserve groundwater, regulate climate, extend green areas, purify air, beautify city and even effectively control flood damages, and etc.


Author(s):  
Qijiao Xie ◽  
Jing Li

As a nature-based solution, development of urban blue-green spaces is widely accepted for mitigating the urban heat island (UHI) effect. It is of great significance to determine the main driving factors of the park cool island (PCI) effect for optimizing park layout and achieving a maximum cooling benefit of urban parks. However, there have been obviously controversial conclusions in previous studies due to varied case contexts. This study was conducted in Wuhan, a city with high water coverage, which has significant differences in context with the previous case cities. The PCI intensity and its correlation with park characteristics were investigated based on remote sensing data. The results indicated that 36 out of 40 urban parks expressed a PCI effect, with a PCI intensity of 0.08~7.29 °C. As expected, larger parks with enough width had stronger PCI intensity. An increased density of hardened elements in a park could significantly weaken PCI effect. Noticeably, in this study, water bodies in a park contributed the most to the PCI effect of urban parks, while the vegetated areas showed a negative impact on the PCI intensity. It implied that in a context with higher water coverage, the cooling effect of vegetation was weakened or even masked by water bodies, due to the interaction effect of different variables on PCI intensity.


2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


2012 ◽  
Vol 193-194 ◽  
pp. 368-371 ◽  
Author(s):  
Chen Yi Sun ◽  
Yi Jiung Lin ◽  
Wen Pei Sung ◽  
Wen Sheng Ou ◽  
Kang Ming Lu

A large amount of research has been published in Taiwan on the reduction of the urban temperature for different strategies. The most important strategy for reducing ambient temperature is increasing green space in city. For analyzing the effect of the vegetation on the thermal environment, this paper collects temperature data from one green roof and one normal roof which are belong to a same office building to analyze the thermal influence of vegetation. The result of this research shows that in summer the maximum cool effect of green roof was -1.60 oC and -0.26 oC in average. Therefore, it can also provide useful data to governments for calculating the environmental benefit if they carry out a green roof policy in mitigating heat island effect in the future.


Sign in / Sign up

Export Citation Format

Share Document