scholarly journals Comparison of learning performance of character controller based on deep reinforcement learning according to state representation

2021 ◽  
Vol 27 (5) ◽  
pp. 55-61
Author(s):  
Chaejun Sohn ◽  
Taesoo Kwon ◽  
Yoonsang Lee
Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1576 ◽  
Author(s):  
Xiaomao Zhou ◽  
Tao Bai ◽  
Yanbin Gao ◽  
Yuntao Han

Extensive studies have shown that many animals’ capability of forming spatial representations for self-localization, path planning, and navigation relies on the functionalities of place and head-direction (HD) cells in the hippocampus. Although there are numerous hippocampal modeling approaches, only a few span the wide functionalities ranging from processing raw sensory signals to planning and action generation. This paper presents a vision-based navigation system that involves generating place and HD cells through learning from visual images, building topological maps based on learned cell representations and performing navigation using hierarchical reinforcement learning. First, place and HD cells are trained from sequences of visual stimuli in an unsupervised learning fashion. A modified Slow Feature Analysis (SFA) algorithm is proposed to learn different cell types in an intentional way by restricting their learning to separate phases of the spatial exploration. Then, to extract the encoded metric information from these unsupervised learning representations, a self-organized learning algorithm is adopted to learn over the emerged cell activities and to generate topological maps that reveal the topology of the environment and information about a robot’s head direction, respectively. This enables the robot to perform self-localization and orientation detection based on the generated maps. Finally, goal-directed navigation is performed using reinforcement learning in continuous state spaces which are represented by the population activities of place cells. In particular, considering that the topological map provides a natural hierarchical representation of the environment, hierarchical reinforcement learning (HRL) is used to exploit this hierarchy to accelerate learning. The HRL works on different spatial scales, where a high-level policy learns to select subgoals and a low-level policy learns over primitive actions to specialize on the selected subgoals. Experimental results demonstrate that our system is able to navigate a robot to the desired position effectively, and the HRL shows a much better learning performance than the standard RL in solving our navigation tasks.


2019 ◽  
Vol 31 (4) ◽  
pp. 520-525 ◽  
Author(s):  
Toshiyuki Yasuda ◽  
Kazuhiro Ohkura ◽  
◽  

Swarm robotic systems (SRSs) are a type of multi-robot system in which robots operate without any form of centralized control. The typical design methodology for SRSs comprises a behavior-based approach, where the desired collective behavior is obtained manually by designing the behavior of individual robots in advance. In contrast, in an automatic design approach, a certain general methodology is adopted. This paper presents a deep reinforcement learning approach for collective behavior acquisition of SRSs. The swarm robots are expected to collect information in parallel and share their experience for accelerating their learning. We conducted real swarm robot experiments and evaluated the learning performance of the swarm in a scenario where the robots consecutively traveled between two landmarks.


2003 ◽  
Vol 19 ◽  
pp. 205-208 ◽  
Author(s):  
E. Wiewiora

Shaping has proven to be a powerful but precarious means of improving reinforcement learning performance. Ng, Harada, and Russell (1999) proposed the potential-based shaping algorithm for adding shaping rewards in a way that guarantees the learner will learn optimal behavior. In this note, we prove certain similarities between this shaping algorithm and the initialization step required for several reinforcement learning algorithms. More specifically, we prove that a reinforcement learner with initial Q-values based on the shaping algorithm's potential function make the same updates throughout learning as a learner receiving potential-based shaping rewards. We further prove that under a broad category of policies, the behavior of these two learners are indistinguishable. The comparison provides intuition on the theoretical properties of the shaping algorithm as well as a suggestion for a simpler method for capturing the algorithm's benefit. In addition, the equivalence raises previously unaddressed issues concerning the efficiency of learning with potential-based shaping.


2021 ◽  
Vol 20 ◽  
pp. 197-204
Author(s):  
Karina Litwynenko ◽  
Małgorzata Plechawska-Wójcik

Reinforcement learning algorithms are gaining popularity, and their advancement is made possible by the presence of tools to evaluate them. This paper concerns the applicability of machine learning algorithms on the Unity platform using the Unity ML-Agents Toolkit library. The purpose of the study was to compare two algorithms: Proximal Policy Optimization and Soft Actor-Critic. The possibility of improving the learning results by combining these algorithms with Generative Adversarial Imitation Learning was also verified. The results of the study showed that the PPO algorithm can perform better in uncomplicated environments with non-immediate rewards, while the additional use of GAIL can improve learning performance.


Sign in / Sign up

Export Citation Format

Share Document