swarm robot
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 44)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 15 ◽  
Author(s):  
You Zhou ◽  
Anhua Chen ◽  
Xinjie He ◽  
Xiaohui Bian

In order to deal with the multi-target search problems for swarm robots in unknown complex environments, a multi-target coordinated search algorithm for swarm robots considering practical constraints is proposed in this paper. Firstly, according to the target detection situation of swarm robots, an ideal search algorithm framework combining the strategy of roaming search and coordinated search is established. Secondly, based on the framework of the multi-target search algorithm, a simplified virtual force model is combined, which effectively overcomes the real-time obstacle avoidance problem in the target search of swarm robots. Finally, in order to solve the distributed communication problem in the multi-target search of swarm robots, a distributed neighborhood communication mechanism based on a time-varying characteristic swarm with a restricted random line of sight is proposed, and which is combined with the multi-target search framework. For the swarm robot kinematics, obstacle avoidance, and communication constraints of swarm robots, the proposed multi-target search strategy is more stable, efficient, and practical than the previous methods. The effectiveness of this proposed method is verified by numerical simulations.


2021 ◽  
pp. 137-156
Author(s):  
N. Pooranam ◽  
T. Vignesh
Keyword(s):  

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 298
Author(s):  
Yu-Ting Chen ◽  
Chian-Song Chiu ◽  
Ya-Ting Lee

Mobile robots are widely used in many applications, while various types of mobile robots and their control researches have been proposed in literature. Since swarm robots have higher flexibility and capacity for teamwork, this paper presents a grey estimator-based tracking controller for formation trajectory tracking of swarm robots. First, wheel-type mobile robots are used and modeled for the controller design. Then, a grey dynamic estimator is developed to estimate the environmental disturbance and model uncertainty for linear feedback compensation. As a result, the asymptotic trajectory tracking is assured, so that the application on the swarm robot formation is achieved for a multi-agent system. The computational complexity is slightly reduced by the design. Finally, in order to verify the reliability of swarm robot formation, several types of formation are maintained by the grey estimator-based feedback linearization controller.


2021 ◽  
pp. 96-105
Author(s):  
Khalil Aloui ◽  
Moncef Hammadi ◽  
Amir Guizani ◽  
Thierry Soriano ◽  
Mohamed Haddar

2021 ◽  
Vol 10 (3) ◽  
pp. 1-25
Author(s):  
Lawrence H. Kim ◽  
Sean Follmer

As swarm robots begin to share the same space with people, it is critical to design legible swarm robot motion that clearly and rapidly communicates the intent of the robots to nearby users. To address this, we apply concepts from intent-expressive robotics, swarm intelligence, and vision science. Specifically, we leverage the trajectory, collective behavior, and density of swarm robots to generate motion that implicitly guides people’s attention toward the goal of the robots. Through online evaluations, we compared different types of intent-expressive motions both in terms of legibility as well as glanceability, a measure we introduce to gauge an observer’s ability to predict robots’ intent pre-attentively. The results show that the collective behavior-based motion has the best legibility performance overall, whereas, for glanceability, trajectory-based legible motion is most effective. These results suggest that the optimal solution may involve a combination of these legibility cues based on the scenario and the desired properties of the motion.


2021 ◽  
Vol 5 (3) ◽  
pp. 602-608
Author(s):  
Gita Fadila Fitriana

Robot control is currently very helpful for human work to be more effective and efficient both in completion time and in mitigating the risk of work accidents that may occur. This study determines the direction of the robot so that it does not collide with each other and reach the target. Controlling the swarm robot with the leader-follower approach uses Fuzzy Logic Type 2-Particle Swarm Optimization (PSO) to optimise the performance of the swarm robot. The Fuzzy Logic Method Type 2 measures the direction decisions of the leader robot and follower robot using a rule base of 8 rules; the leader-follower robot is given a target. Achieving targets using PSO, the PSO process looks for potential solutions with quality references to reach the target as the optimal solution. The leader-follower modelling has been modelled using kinematic equations and controlling the movement of the robot's trajectory in the form of a simulation that has been carried out. The measurement results based on robot data in an open environment are 110 data, and a square environment is 1342. The measurement results based on robot time in a four-obstacle environment have the fastest time of 10.83 seconds and the longest time environment in an oval environment of 134.9 seconds. The measurement results are based on resources in a free environment of 10.6 kb and a square environment of 49.1 kb. Fuzzy Logic Type 2-PSO has a higher time indicating a stable speed result and judging from the trajectory in avoiding obstacles, and the leader-follower robot has a faster response.  


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yandong Luo ◽  
Jianwen Guo ◽  
Zhenpeng Lao ◽  
Shaohui Zhang ◽  
Xiaohui Yan

Physarum polycephalum, a unicellular and multiheaded slime mould, can form highly efficient networks connecting separated food sources during the process of foraging. These adaptive networks exhibit a unique characteristic in that they are optimized without the control of a central consciousness. Inspired by this phenomenon, we present an efficient exploration and navigation strategy for a swarm of robots, which exploits cooperation and self-organisation to overcome the limited abilities of the individual robots. The task faced by the robots consists in the exploration of an unknown environment in order to find a path between two distant target areas. For the proposed algorithm (EAIPP), we experimentally present robustness tests and obstacle tests conducted to analyse the performance of our algorithm and compare the proposed algorithm with other swarm robot foraging algorithms that also focus on the path formation task. This work has certain significance for the research of swarm robots and Physarum polycephalum. For the research of swarm robotics, our algorithm not only can lead multirobot as a whole to overcome the limitations of very simple individual agents but also can offer better performance in terms of search efficiency and success rate. For the research of Physarum polycephalum, this work is the first one combining swarm robots and Physarum polycephalum. It also reveals the potential of the Physarum polycephalum foraging principle in multirobot systems.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 680
Author(s):  
Qiuzhen Wang ◽  
Hai Zhang

The openness of the environment brings great challenges to the swarm robotic system to cover the task area quickly and effectively. In this paper, a coverage method based on gradient and grouping (GGC) is proposed. What is novel about our proposed solution is that it is suitable for extremely simple robots that lack computing or storage power. Through the change of the robot gradient, the swarm robot system with very simple functions can effectively self-organize to cover the unknown task area. By grouping the swarm robots, each group can cover the task area in parallel, which greatly improves the coverage speed. We verified our proposed method through experimental simulation and found that the gradient and grouping-based method in this paper was superior to other methods in terms of coverage, coverage completion time, and other aspects. Simultaneously, the robustness of the proposed method is analyzed and admirable experimental results are obtained. Because the applicable robot is very simple, the method in this paper can be applied to the submillimeter swarm robot system, which will lay the foundation for micro medicine.


Sign in / Sign up

Export Citation Format

Share Document