scholarly journals APPROPRIATE ALLOCATIONS AND LOCATIONS ANALYSIS OF INCINERATION FACILITIES BY MULTI-OBJECTIVE OPTIMIZATION USING VORONOI DIAGRAM AND GENETIC ALGORITHM: A CASE STUDY OF THE NORTHWESTERN BAY AREA IN CHIBA PREFECTURE

2021 ◽  
Vol 64 (0) ◽  
pp. 71-100
Author(s):  
Taketo Kamikawa ◽  
Takashi Hasuike
Author(s):  
F. Al-Abri ◽  
E.A. Edirisinghe ◽  
C. Grecos

This chapter presents a generalised framework for multi-objective optimisation of video CODECs for use in off-line, on-demand applications. In particular, an optimization scheme is proposed to determine the optimum coding parameters for a H.264 AVC video codec in a memory and bandwidth constrained environment, which minimises codec complexity and video distortion. The encoding/decoding parameters that have a significant impact on the performance of the codec are initially obtained through experimental analysis. A mathematical formulation by means of regression is subsequently used to associate these parameters with the relevant objectives and define a Multi-Objective Optimization (MOO) problem. Solutions to the optimization problem are reached through a Non-dominated Sorting Genetic Algorithm (NSGA-II). It is shown that the proposed framework is flexible on the number of objectives that can jointly be optimized. Furthermore, any of the objectives can be included as constraints depending on the requirements of the services to be supported. Practical use of the proposed framework is described using a case study that involves video content transmission to a mobile hand.


Author(s):  
M. Kanthababu

Recently evolutionary algorithms have created more interest among researchers and manufacturing engineers for solving multiple-objective problems. The objective of this chapter is to give readers a comprehensive understanding and also to give a better insight into the applications of solving multi-objective problems using evolutionary algorithms for manufacturing processes. The most important feature of evolutionary algorithms is that it can successfully find globally optimal solutions without getting restricted to local optima. This chapter introduces the reader with the basic concepts of single-objective optimization, multi-objective optimization, as well as evolutionary algorithms, and also gives an overview of its salient features. Some of the evolutionary algorithms widely used by researchers for solving multiple objectives have been presented and compared. Among the evolutionary algorithms, the Non-dominated Sorting Genetic Algorithm (NSGA) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) have emerged as most efficient algorithms for solving multi-objective problems in manufacturing processes. The NSGA method applied to a complex manufacturing process, namely plateau honing process, considering multiple objectives, has been detailed with a case study. The chapter concludes by suggesting implementation of evolutionary algorithms in different research areas which hold promise for future applications.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6181
Author(s):  
Xu Zhang ◽  
Hua Zhang ◽  
Jin Yao

With the emergence of the concept of green manufacturing, more manufacturers have attached importance to energy consumption indicators. The process planning and shop scheduling procedures involved in manufacturing processes can both independently achieve energy savings, however independent optimization approaches limit the optimization space. In order to achieve a better optimization effect, the optimization of energy savings for integrated process planning and scheduling (IPPS) was studied in this paper. A mathematical model for multi-objective optimization of IPPS was established to minimize the total energy consumption, makespan, and peak power of the job shop. A hierarchical multi-strategy genetic algorithm based on non-dominated sorting (NSHMSGA) was proposed to solve the problem. This algorithm was based on the non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) framework, in which an improved hierarchical coding method is used, containing a variety of genetic operators with different strategies, and in which a population degradation mechanism based on crowding distance is adopted. The results from the case study in this paper showed that the proposed method reduced the energy consumption by approximately 15% for two different scheduling schemes with the same makespan. The computational results for NSHMSGA and NSGA-Ⅱ approaches were evaluated quantitatively in the case study. The C-metric values for NSHMSGA and NSGA-Ⅱ were 0.78 and 0, the spacing metric values were 0.4724 and 0.5775, and the maximum spread values were 1.6404 and 1.3351, respectively. The evaluation indexes showed that the NSHMSGA approach could obtain a better non-dominated solution set than the NSGA-Ⅱ approach in order to solve the multi-objective IPPS problem proposed in this paper.


2012 ◽  
pp. 352-376 ◽  
Author(s):  
M. Kanthababu

Recently evolutionary algorithms have created more interest among researchers and manufacturing engineers for solving multiple-objective problems. The objective of this chapter is to give readers a comprehensive understanding and also to give a better insight into the applications of solving multi-objective problems using evolutionary algorithms for manufacturing processes. The most important feature of evolutionary algorithms is that it can successfully find globally optimal solutions without getting restricted to local optima. This chapter introduces the reader with the basic concepts of single-objective optimization, multi-objective optimization, as well as evolutionary algorithms, and also gives an overview of its salient features. Some of the evolutionary algorithms widely used by researchers for solving multiple objectives have been presented and compared. Among the evolutionary algorithms, the Non-dominated Sorting Genetic Algorithm (NSGA) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) have emerged as most efficient algorithms for solving multi-objective problems in manufacturing processes. The NSGA method applied to a complex manufacturing process, namely plateau honing process, considering multiple objectives, has been detailed with a case study. The chapter concludes by suggesting implementation of evolutionary algorithms in different research areas which hold promise for future applications.


Author(s):  
Kazutoshi KURAMOTO ◽  
Fumiyasu MAKINOSHIMA ◽  
Anawat SUPPASRI ◽  
Fumihiko IMAMURA

Sign in / Sign up

Export Citation Format

Share Document