scholarly journals Development of a Fuzzy Logic System to Identify the Risk of Projects Financed from Structural Funds

Author(s):  
Marcel Ioan Boloş ◽  
Diana-Claudia Sabău-Popa ◽  
Petru Filip ◽  
Adriana Manolescu

<p>The fuzzy logic system developed in this research paper seeks to identify the financial risk of projects financed from structural funds when changes occur in project values, in the duration of the projects and in the implementation durations. Those two factors are known to influence the financial risk. The fuzzy system was simulated using Matlab and the results showed its operation and the conclusion that the financial risk of the project is dependent on the developments values and on the implementation duration. The developed and tested fuzzy logic system provides information on financial risk intensity organized into three categories: small, medium and large and on the inflection point of transition from low risk to high risk. This is considered an early warning system for the management staff with responsibilities in structural funds.</p>

2011 ◽  
Vol 3 (2) ◽  
pp. 11-15
Author(s):  
Seng Hansun

Recently, there are so many soft computing methods been used in time series analysis. One of these methods is fuzzy logic system. In this paper, we will try to implement fuzzy logic system to predict a non-stationary time series data. The data we use here is Mackey-Glass chaotic time series. We also use MATLAB software to predict the time series data, which have been divided into four groups of input-output pairs. These groups then will be used as the input variables of the fuzzy logic system. There are two scenarios been used in this paper, first is by using seven fuzzy sets, and second is by using fifteen fuzzy sets. The result shows that the fuzzy system with fifteen fuzzy sets give a better forecasting result than the fuzzy system with seven fuzzy sets. Index Terms—forecasting, fuzzy logic, Mackey-Glass chaotic, MATLAB, time series analysis


2016 ◽  
Vol 26 (04) ◽  
pp. 1750061 ◽  
Author(s):  
G. Thippa Reddy ◽  
Neelu Khare

The objective of the work is to predict heart disease using computing techniques like an oppositional firefly with BAT and rule-based fuzzy logic (RBFL). The system would help the doctors to automate heart disease diagnosis and to enhance the medical care. In this paper, a hybrid OFBAT-RBFL heart disease diagnosis system is designed. Here, at first, the relevant features are selected from the dataset using locality preserving projection (LPP) algorithm which helps the diagnosis system to develop a classification model using the fuzzy logic system. After that, the rules for the fuzzy system are created from the sample data. Among the entire rules, the important and relevant group of rules are selected using OFBAT algorithm. Here, the opposition based learning (OBL) is hybrid to the firefly with BAT algorithm to improve the performance of the FAT algorithm while optimizing the rules of the fuzzy logic system. Next, the fuzzy system is designed with the help of designed fuzzy rules and membership functions so that classification can be carried out within the fuzzy system designed. At last, the experimentation is performed by means of publicly available UCI datasets, i.e., Cleveland, Hungarian and Switzerland datasets. The experimentation result proves that the RBFL prediction algorithm outperformed the existing approach by attaining the accuracy of 78%.


2018 ◽  
Vol 38 (2) ◽  
pp. 70-78
Author(s):  
Roberto Baeza Serrato

Manufacturing planning in small and medium enterprises (SMEs) uses a deterministic behavior, and the execution of these plans has a stochastic behavior. The evaluation of the manufacturing planning is based on a simple criterion as job on time or job delayed, without integrating conditions of uncertainty in the cycle times for each job. The aim of this paper is to propose a novel multidimensional stochastic Fuzzy Logic System (msFLS) approach to execute a plan with stochastic behavior in knitting SMEs and their evaluation. In this paper, two main contributions are identified. On one hand, the generation of a multi-dimensional diffuse system is proposed. Normal probability density function is used to generate multi linguistic variables to transform deterministic plans to stochastic plans in knitting SMEs. The fuzzy subsets or linguistic terms are labelled and categorized in a simple and clear language as poor (P), regular (R), good (G) and excellent (E). The Gaussian function was used as a membership function. On the other hand, the second contribution is the use of the sum of frequencies in the stage of implication for the multi-Fuzzy system. This research was validated through an integration of two different intelligent techniques such as the proposed novel msFLS and artificial neural networks. Neural networks were used as a generalization mechanism to perform any stochastic planning in the knitting companies. The inputs and outputs of the fuzzy system are used as training patterns in the neural network. The stages of the proposed approach are explicitly described and applied to random data and validated with real data of SMEs of the South of Guanajuato, Mexico. The proposed system had a positive response in the textile company, which continues to be used to carry out its manufacturing planning and the evaluation of its execution.


2016 ◽  
Vol 12 (2) ◽  
pp. 188-197
Author(s):  
A yahoo.com ◽  
Aumalhuda Gani Abood aumalhuda ◽  
A comp ◽  
Dr. Mohammed A. Jodha ◽  
Dr. Majid A. Alwan

2013 ◽  
Vol 37 (3) ◽  
pp. 611-620
Author(s):  
Ing-Jr Ding ◽  
Chih-Ta Yen

The Eigen-FLS approach using an eigenspace-based scheme for fast fuzzy logic system (FLS) establishments has been attempted successfully in speech pattern recognition. However, speech pattern recognition by Eigen-FLS will still encounter a dissatisfactory recognition performance when the collected data for eigen value calculations of the FLS eigenspace is scarce. To tackle this issue, this paper proposes two improved-versioned Eigen-FLS methods, incremental MLED Eigen-FLS and EigenMLLR-like Eigen-FLS, both of which use a linear interpolation scheme for properly adjusting the target speaker’s Eigen-FLS model derived from an FLS eigenspace. Developed incremental MLED Eigen-FLS and EigenMLLR-like Eigen-FLS are superior to conventional Eigen-FLS especially in the situation of insufficient data from the target speaker.


Sign in / Sign up

Export Citation Format

Share Document