scholarly journals Combination of Evidential Sensor Reports with Distance Function and Belief Entropy in Fault Diagnosis

2019 ◽  
Vol 14 (3) ◽  
pp. 329-343 ◽  
Author(s):  
Yukun Dong ◽  
Jiantao Zhang ◽  
Zhen Li ◽  
Yong Hu ◽  
Yong Deng

Although evidence theory has been applied in sensor data fusion, it will have unreasonable results when handling highly conflicting sensor reports. To address the issue, an improved fusing method with evidence distance and belief entropy is proposed. Generally, the goal is to obtain the appropriate weights assigning to different reports. Specifically, the distribution difference between two sensor reports is measured by belief entropy. The diversity degree is presented by the combination of evidence distance and the distribution difference. Then, the weight of each sensor report is determined based on the proposed diversity degree. Finally, we can use Dempster combination rule to make the decision. A real application in fault diagnosis and an example show the efficiency of the proposed method. Compared with the existing methods, the method not only has a better performance of convergence, but also less uncertainty.

2012 ◽  
Vol 466-467 ◽  
pp. 1222-1226
Author(s):  
Bin Ma ◽  
Lin Chong Hao ◽  
Wan Jiang Zhang ◽  
Jing Dai ◽  
Zhong Hua Han

In this paper, we presented an equipment fault diagnosis method based on multi-sensor data fusion, in order to solve the problems such as uncertainty, imprecision and low reliability caused by using a single sensor to diagnose the equipment faults. We used a variety of sensors to collect the data for diagnosed objects and fused the data by using D-S evidence theory, according to the change of confidence and uncertainty, diagnosed whether the faults happened. Experimental results show that, the D-S evidence theory algorithm can reduce the uncertainty of the results of fault diagnosis, improved diagnostic accuracy and reliability, and compared with the fault diagnosis using a single sensor, this method has a better effect.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 993 ◽  
Author(s):  
Bin Yang ◽  
Dingyi Gan ◽  
Yongchuan Tang ◽  
Yan Lei

Quantifying uncertainty is a hot topic for uncertain information processing in the framework of evidence theory, but there is limited research on belief entropy in the open world assumption. In this paper, an uncertainty measurement method that is based on Deng entropy, named Open Deng entropy (ODE), is proposed. In the open world assumption, the frame of discernment (FOD) may be incomplete, and ODE can reasonably and effectively quantify uncertain incomplete information. On the basis of Deng entropy, the ODE adopts the mass value of the empty set, the cardinality of FOD, and the natural constant e to construct a new uncertainty factor for modeling the uncertainty in the FOD. Numerical example shows that, in the closed world assumption, ODE can be degenerated to Deng entropy. An ODE-based information fusion method for sensor data fusion is proposed in uncertain environments. By applying it to the sensor data fusion experiment, the rationality and effectiveness of ODE and its application in uncertain information fusion are verified.


Author(s):  
Jun He ◽  
Shixi Yang ◽  
Evangelos Papatheou ◽  
Xin Xiong ◽  
Haibo Wan ◽  
...  

Gearbox is the key functional unit in a mechanical transmission system. As its operating condition being complex and the interference transmitting from diverse paths, the vibration signals collected from an individual sensor may not provide a fully accurate description on the health condition of a gearbox. For this reason, a new method for fault diagnosis of gearboxes based on multi-sensor data fusion is presented in this paper. There are three main steps in this method. First, prior to feature extraction, two signal processing methods, i.e. the energy operator and time synchronous averaging, are applied to multi-sensor vibration signals to remove interference and highlight fault characteristic information, then the statistical features are extracted from both the raw and preprocessed signals to form an original feature set. Second, a coupled feature selection scheme combining the distance evaluation technique and max-relevance and min-redundancy is carried out to obtain an optimal feature set. Finally, the deep belief network, a novel intelligent diagnosis method with a deep architecture, is applied to identify different gearbox health conditions. As the multi-sensor data fusion technique is utilized to provide sufficient and complementary information for fault diagnosis, this method holds the potential to overcome the shortcomings from an individual sensor that may not accurately describe the health conditions of gearboxes. Ten different gearbox health conditions are simulated to validate the performance of the proposed method. The results confirm the superiority of the proposed method in gearbox fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document