Natural Gradient Descent of Complex-Valued Neural Networks Invariant under Rotations

Author(s):  
Jun-ichi MUKUNO ◽  
Hajime MATSUI
2019 ◽  
Vol 9 (21) ◽  
pp. 4568
Author(s):  
Hyeyoung Park ◽  
Kwanyong Lee

Gradient descent method is an essential algorithm for learning of neural networks. Among diverse variations of gradient descent method that have been developed for accelerating learning speed, the natural gradient learning is based on the theory of information geometry on stochastic neuromanifold, and is known to have ideal convergence properties. Despite its theoretical advantages, the pure natural gradient has some limitations that prevent its practical usage. In order to get the explicit value of the natural gradient, it is required to know true probability distribution of input variables, and to calculate inverse of a matrix with the square size of the number of parameters. Though an adaptive estimation of the natural gradient has been proposed as a solution, it was originally developed for online learning mode, which is computationally inefficient for the learning of large data set. In this paper, we propose a novel adaptive natural gradient estimation for mini-batch learning mode, which is commonly adopted for big data analysis. For two representative stochastic neural network models, we present explicit rules of parameter updates and learning algorithm. Through experiments on three benchmark problems, we confirm that the proposed method has superior convergence properties to the conventional methods.


2021 ◽  
Vol 2021 (12) ◽  
pp. 124010
Author(s):  
Ryo Karakida ◽  
Kazuki Osawa

Abstract Natural gradient descent (NGD) helps to accelerate the convergence of gradient descent dynamics, but it requires approximations in large-scale deep neural networks because of its high computational cost. Empirical studies have confirmed that some NGD methods with approximate Fisher information converge sufficiently fast in practice. Nevertheless, it remains unclear from the theoretical perspective why and under what conditions such heuristic approximations work well. In this work, we reveal that, under specific conditions, NGD with approximate Fisher information achieves the same fast convergence to global minima as exact NGD. We consider deep neural networks in the infinite-width limit, and analyze the asymptotic training dynamics of NGD in function space via the neural tangent kernel. In the function space, the training dynamics with the approximate Fisher information are identical to those with the exact Fisher information, and they converge quickly. The fast convergence holds in layer-wise approximations; for instance, in block diagonal approximation where each block corresponds to a layer as well as in block tri-diagonal and K-FAC approximations. We also find that a unit-wise approximation achieves the same fast convergence under some assumptions. All of these different approximations have an isotropic gradient in the function space, and this plays a fundamental role in achieving the same convergence properties in training. Thus, the current study gives a novel and unified theoretical foundation with which to understand NGD methods in deep learning.


2008 ◽  
Vol 18 (02) ◽  
pp. 147-156 ◽  
Author(s):  
MASAKI KOBAYASHI

HAM (Hopfield Associative Memory) and BAM (Bidirectinal Associative Memory) are representative associative memories by neural networks. The storage capacity by the Hebb rule, which is often used, is extremely low. In order to improve it, some learning methods, for example, pseudo-inverse matrix learning and gradient descent learning, have been introduced. Oh introduced pseudo-relaxation learning algorithm to HAM and BAM. In order to accelerate it, Hattori proposed quick learning. Noest proposed CAM (Complex-valued Associative Memory), which is complex-valued HAM. The storage capacity of CAM by the Hebb rule is also extremely low. Pseudo-inverse matrix learning and gradient descent learning have already been generalized to CAM. In this paper, we apply pseudo-relaxation learning algorithm to CAM in order to improve the capacity.


Sign in / Sign up

Export Citation Format

Share Document