scholarly journals Understanding approximate Fisher information for fast convergence of natural gradient descent in wide neural networks*

2021 ◽  
Vol 2021 (12) ◽  
pp. 124010
Author(s):  
Ryo Karakida ◽  
Kazuki Osawa

Abstract Natural gradient descent (NGD) helps to accelerate the convergence of gradient descent dynamics, but it requires approximations in large-scale deep neural networks because of its high computational cost. Empirical studies have confirmed that some NGD methods with approximate Fisher information converge sufficiently fast in practice. Nevertheless, it remains unclear from the theoretical perspective why and under what conditions such heuristic approximations work well. In this work, we reveal that, under specific conditions, NGD with approximate Fisher information achieves the same fast convergence to global minima as exact NGD. We consider deep neural networks in the infinite-width limit, and analyze the asymptotic training dynamics of NGD in function space via the neural tangent kernel. In the function space, the training dynamics with the approximate Fisher information are identical to those with the exact Fisher information, and they converge quickly. The fast convergence holds in layer-wise approximations; for instance, in block diagonal approximation where each block corresponds to a layer as well as in block tri-diagonal and K-FAC approximations. We also find that a unit-wise approximation achieves the same fast convergence under some assumptions. All of these different approximations have an isotropic gradient in the function space, and this plays a fundamental role in achieving the same convergence properties in training. Thus, the current study gives a novel and unified theoretical foundation with which to understand NGD methods in deep learning.

Author(s):  
Jinghui Chen ◽  
Dongruo Zhou ◽  
Yiqi Tang ◽  
Ziyan Yang ◽  
Yuan Cao ◽  
...  

Adaptive gradient methods, which adopt historical gradient information to automatically adjust the learning rate, despite the nice property of fast convergence, have been observed to generalize worse than stochastic gradient descent (SGD) with momentum in training deep neural networks. This leaves how to close the generalization gap of adaptive gradient methods an open problem. In this work, we show that adaptive gradient methods such as Adam, Amsgrad, are sometimes "over adapted". We design a new algorithm, called Partially adaptive momentum estimation method, which unifies the Adam/Amsgrad with SGD by introducing a partial adaptive parameter $p$, to achieve the best from both worlds. We also prove the convergence rate of our proposed algorithm to a stationary point in the stochastic nonconvex optimization setting. Experiments on standard benchmarks show that our proposed algorithm can maintain fast convergence rate as Adam/Amsgrad while generalizing as well as SGD in training deep neural networks. These results would suggest practitioners pick up adaptive gradient methods once again for faster training of deep neural networks.


Author(s):  
Yufeng Xia ◽  
Jun Zhang ◽  
Tingsong Jiang ◽  
Zhiqiang Gong ◽  
Wen Yao ◽  
...  

AbstractQuantifying predictive uncertainty in deep neural networks is a challenging and yet unsolved problem. Existing quantification approaches can be categorized into two lines. Bayesian methods provide a complete uncertainty quantification theory but are often not scalable to large-scale models. Along another line, non-Bayesian methods have good scalability and can quantify uncertainty with high quality. The most remarkable idea in this line is Deep Ensemble, but it is limited in practice due to its expensive computational cost. Thus, we propose HatchEnsemble to improve the efficiency and practicality of Deep Ensemble. The main idea is to use function-preserving transformations, ensuring HatchNets to inherit the knowledge learned by a single model called SeedNet. This process is called hatching, and HatchNet can be obtained by continuously widening the SeedNet. Based on our method, two different hatches are proposed, respectively, for ensembling the same and different architecture networks. To ensure the diversity of models, we also add random noises to parameters during hatching. Experiments on both clean and corrupted datasets show that HatchEnsemble can give a competitive prediction performance and better-calibrated uncertainty quantification in a shorter time compared with baselines.


2021 ◽  
pp. 1-34
Author(s):  
Ryo Karakida ◽  
Shotaro Akaho ◽  
Shun-ichi Amari

Abstract The Fisher information matrix (FIM) plays an essential role in statistics and machine learning as a Riemannian metric tensor or a component of the Hessian matrix of loss functions. Focusing on the FIM and its variants in deep neural networks (DNNs), we reveal their characteristic scale dependence on the network width, depth, and sample size when the network has random weights and is sufficiently wide. This study covers two widely used FIMs for regression with linear output and for classification with softmax output. Both FIMs asymptotically show pathological eigenvalue spectra in the sense that a small number of eigenvalues become large outliers depending on the width or sample size, while the others are much smaller. It implies that the local shape of the parameter space or loss landscape is very sharp in a few specific directions while almost flat in the other directions. In particular, the softmax output disperses the outliers and makes a tail of the eigenvalue density spread from the bulk. We also show that pathological spectra appear in other variants of FIMs: one is the neural tangent kernel; another is a metric for the input signal and feature space that arises from feedforward signal propagation. Thus, we provide a unified perspective on the FIM and its variants that will lead to more quantitative understanding of learning in large-scale DNNs.


Author(s):  
Chen Qi ◽  
Shibo Shen ◽  
Rongpeng Li ◽  
Zhifeng Zhao ◽  
Qing Liu ◽  
...  

AbstractNowadays, deep neural networks (DNNs) have been rapidly deployed to realize a number of functionalities like sensing, imaging, classification, recognition, etc. However, the computational-intensive requirement of DNNs makes it difficult to be applicable for resource-limited Internet of Things (IoT) devices. In this paper, we propose a novel pruning-based paradigm that aims to reduce the computational cost of DNNs, by uncovering a more compact structure and learning the effective weights therein, on the basis of not compromising the expressive capability of DNNs. In particular, our algorithm can achieve efficient end-to-end training that transfers a redundant neural network to a compact one with a specifically targeted compression rate directly. We comprehensively evaluate our approach on various representative benchmark datasets and compared with typical advanced convolutional neural network (CNN) architectures. The experimental results verify the superior performance and robust effectiveness of our scheme. For example, when pruning VGG on CIFAR-10, our proposed scheme is able to significantly reduce its FLOPs (floating-point operations) and number of parameters with a proportion of 76.2% and 94.1%, respectively, while still maintaining a satisfactory accuracy. To sum up, our scheme could facilitate the integration of DNNs into the common machine-learning-based IoT framework and establish distributed training of neural networks in both cloud and edge.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1511
Author(s):  
Taylor Simons ◽  
Dah-Jye Lee

There has been a recent surge in publications related to binarized neural networks (BNNs), which use binary values to represent both the weights and activations in deep neural networks (DNNs). Due to the bitwise nature of BNNs, there have been many efforts to implement BNNs on ASICs and FPGAs. While BNNs are excellent candidates for these kinds of resource-limited systems, most implementations still require very large FPGAs or CPU-FPGA co-processing systems. Our work focuses on reducing the computational cost of BNNs even further, making them more efficient to implement on FPGAs. We target embedded visual inspection tasks, like quality inspection sorting on manufactured parts and agricultural produce sorting. We propose a new binarized convolutional layer, called the neural jet features layer, that learns well-known classic computer vision kernels that are efficient to calculate as a group. We show that on visual inspection tasks, neural jet features perform comparably to standard BNN convolutional layers while using less computational resources. We also show that neural jet features tend to be more stable than BNN convolution layers when training small models.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Fuyong Xing ◽  
Yuanpu Xie ◽  
Xiaoshuang Shi ◽  
Pingjun Chen ◽  
Zizhao Zhang ◽  
...  

Abstract Background Nucleus or cell detection is a fundamental task in microscopy image analysis and supports many other quantitative studies such as object counting, segmentation, tracking, etc. Deep neural networks are emerging as a powerful tool for biomedical image computing; in particular, convolutional neural networks have been widely applied to nucleus/cell detection in microscopy images. However, almost all models are tailored for specific datasets and their applicability to other microscopy image data remains unknown. Some existing studies casually learn and evaluate deep neural networks on multiple microscopy datasets, but there are still several critical, open questions to be addressed. Results We analyze the applicability of deep models specifically for nucleus detection across a wide variety of microscopy image data. More specifically, we present a fully convolutional network-based regression model and extensively evaluate it on large-scale digital pathology and microscopy image datasets, which consist of 23 organs (or cancer diseases) and come from multiple institutions. We demonstrate that for a specific target dataset, training with images from the same types of organs might be usually necessary for nucleus detection. Although the images can be visually similar due to the same staining technique and imaging protocol, deep models learned with images from different organs might not deliver desirable results and would require model fine-tuning to be on a par with those trained with target data. We also observe that training with a mixture of target and other/non-target data does not always mean a higher accuracy of nucleus detection, and it might require proper data manipulation during model training to achieve good performance. Conclusions We conduct a systematic case study on deep models for nucleus detection in a wide variety of microscopy images, aiming to address several important but previously understudied questions. We present and extensively evaluate an end-to-end, pixel-to-pixel fully convolutional regression network and report a few significant findings, some of which might have not been reported in previous studies. The model performance analysis and observations would be helpful to nucleus detection in microscopy images.


Sign in / Sign up

Export Citation Format

Share Document