scholarly journals Accuracy of Gradient-Based Optical Flow Estimation in High-Frame-Rate Video Analysis

2012 ◽  
Vol E95-D (4) ◽  
pp. 1130-1141 ◽  
Author(s):  
Lei CHEN ◽  
Takeshi TAKAKI ◽  
Idaku ISHII
2016 ◽  
Vol 850 ◽  
pp. 121-128
Author(s):  
Şükrü Görgülü ◽  
Ömer Nezih Gerek

This study introduces a frame-rate up-conversion method that uses a temporal wavelet zerotree-based shrinkage algorithm over motion trajectory of a video obtained by optical flow. The method starts by optical flow estimation for predicting initial estimates of inserted frame pixels. Then, the predicted frame pixels are denoised using a specific wavelet-based algorithm, where each pixel location is examined independently through its own temporal motion path. The denoising was performed by shrinking zero-tree footprints to remove temporal oddities. The resulting video was observed to have more fluent temporal flow as compared to optical flow - only interpolation.


2012 ◽  
Vol 24 (4) ◽  
pp. 686-698 ◽  
Author(s):  
Lei Chen ◽  
◽  
Hua Yang ◽  
Takeshi Takaki ◽  
Idaku Ishii

In this paper, we propose a novel method for accurate optical flow estimation in real time for both high-speed and low-speed moving objects based on High-Frame-Rate (HFR) videos. We introduce a multiframe-straddling function to select several pairs of images with different frame intervals from an HFR image sequence even when the estimated optical flow is required to output at standard video rates (NTSC at 30 fps and PAL at 25 fps). The multiframestraddling function can remarkably improve the measurable range of velocities in optical flow estimation without heavy computation by adaptively selecting a small frame interval for high-speed objects and a large frame interval for low-speed objects. On the basis of the relationship between the frame intervals and the accuracies of the optical flows estimated by the Lucas–Kanade method, we devise a method to determine multiple frame intervals in optical flow estimation and select an optimal frame interval from these intervals according to the amplitude of the estimated optical flow. Our method was implemented using software on a high-speed vision platform, IDP Express. The estimated optical flows were accurately outputted at intervals of 40 ms in real time by using three pairs of 512×512 images; these images were selected by frame-straddling a 2000-fps video with intervals of 0.5, 1.5, and 5 ms. Several experiments were performed for high-speed movements to verify that our method can remarkably improve the measurable range of velocities in optical flow estimation, compared to optical flows estimated for 25-fps videos with the Lucas–Kanade method.


Author(s):  
Minseop Kim ◽  
Haechul Choi

Recently, the demand for high-quality video content has rapidly been increasing, led by the development of network technology and the growth in video streaming platforms. In particular, displays with a high refresh rate, such as 120 Hz, have become popular. However, the visual quality is only enhanced if the video stream is produced at the same high frame rate. For the high quality, conventional videos with a low frame rate should be converted into a high frame rate in real time. This paper introduces a bidirectional intermediate flow estimation method for real-time video frame interpolation. A bidirectional intermediate optical flow is directly estimated to predict an accurate intermediate frame. For real-time processing, multiple frames are interpolated with a single intermediate optical flow and parts of the network are implemented in 16-bit floating-point precision. Perceptual loss is also applied to improve the cognitive performance of the interpolated frames. The experimental results showed a high prediction accuracy of 35.54 dB on the Vimeo90K triplet benchmark dataset. The interpolation speed of 84 fps was achieved for 480p resolution.


Sign in / Sign up

Export Citation Format

Share Document