Journal of Web Engineering
Latest Publications


TOTAL DOCUMENTS

190
(FIVE YEARS 187)

H-INDEX

3
(FIVE YEARS 3)

Published By River Publishers

1540-9589, 1540-9589

Author(s):  
Qibin Zhou ◽  
Qinggang Su ◽  
Peng Xiong

The assisted download is an effective method solving the problem that the coverage range is insufficient when Wi-Fi access is used in VANET. For the low utilization of time-space resource within blind area and unbalanced download services in VANET, this paper proposes an approximate global optimum scheme to select vehicle based on WebGIS for assistance download. For WebGIS, this scheme uses a two-dimensional matrix to respectively define the time-space resource and the vehicle selecting behavior, and uses Markov Decision Process to solve the problem of time-space resource allocation within blind area, and utilizes the communication features of VANET to simplify the behavior space of vehicle selection so as to reduce the computing complexity. At the same time, Euclidean Distance(Metric) and Manhattan Distance are used as the basis of vehicle selection by the proposed scheme so that, in the case of possessing the balanced assisted download services, the target vehicles can increase effectively the total amount of user downloads. Experimental results show that because of the wider access range and platform independence of WebGIS, when user is in the case of relatively balanced download services, the total amount of downloads is increased by more than 20%. Moreover, WebGIS usually only needs to use Web browser (sometimes add some plug-ins) on the client side, so the system cost is greatly reduced.


Author(s):  
Qibin Zhou ◽  
Qingang Su ◽  
Dingyu Yang

Real-time traffic estimation focuses on predicting the travel time of one travel path, which is capable of helping drivers selecting an appropriate or favor path. Statistical analysis or neural network approaches have been explored to predict the travel time on a massive volume of traffic data. These methods need to be updated when the traffic varies frequently, which incurs tremendous overhead. We build a system RealTER⁢e⁢a⁢l⁢T⁢E, implemented on a popular and open source streaming system StormS⁢t⁢o⁢r⁢m to quickly deal with high speed trajectory data. In RealTER⁢e⁢a⁢l⁢T⁢E, we propose a locality-sensitive partition and deployment algorithm for a large road network. A histogram estimation approach is adopted to predict the traffic. This approach is general and able to be incremental updated in parallel. Extensive experiments are conducted on six real road networks and the results illustrate RealTE achieves higher throughput and lower prediction error than existing methods. The runtime of a traffic estimation is less than 11 seconds over a large road network and it takes only 619619 microseconds for model updates.


Author(s):  
Isaac Sim ◽  
Young Ghyu Sun ◽  
Soo Hyun Kim ◽  
SangWoon Lee ◽  
Cheong Ghil Kim ◽  
...  

In this letter, we study a scenario based on degenerate unmixing estimation technique (DUET) that separates original signals from mixture of FHSS signals with two antennas. We have shown that the assumptions for separating mixed signals in DUET can be applied to drone based digital signage recognition signals and proposed the DUET-based separation scheme (DBSS) to classify the mixed recognition drone signals by extracting the delay and attenuation components of the mixture signal through the likelihood function and the short-term Fourier transform (STFT). In addition, we propose an iterative algorithm for signal separation with the conventional DUET scheme. Numerical results showed that the proposed algorithm is more separation-efficient compared to baseline schemes. DBSS can separate all signals within about 0.56 seconds when there are fewer than nine signage signals.


Author(s):  
Feng Xiong ◽  
Hongzhi Wang

The data mining has remained a subject of unfailing charm for research. The knowledge graph is rising and showing infinite life force and strong developing potential in recent years, where it is observed that acyclic knowledge graph has capacity for enhancing usability. Though the development of knowledge graphs has provided an ample scope for appearing the abilities of data mining, related researches are still insufficient. In this paper, we introduce path traversal patterns mining to knowledge graph. We design a novel simple path traversal pattern mining framework for improving the representativeness of result. A divide-and-conquer approach of combining each path is proposed to discover the most frequent traversal patterns in knowledge graph. To support the algorithm, we design a linked list structure indexed by the length of sequences with handy operations. The correctness of algorithm is proven. Experiments show that our algorithm reaches a high coverage with low output amounts compared to existing frequent sequence mining algorithms.


Author(s):  
Sowmya HK ◽  
R. J. Anandhi

The WWW has a big number of pages and URLs that supply the user with a great amount of content. In an intensifying epoch of information, analysing users browsing behaviour is a significant affair. Web usage mining techniques are applied to the web server log to analyse the user behaviour. Identification of user sessions is one of the key and demanding tasks in the pre-processing stage of web usage mining. This paper emphasizes on two important fallouts with the approaches used in the existing session identification methods such as Time based and Referrer based sessionization. The first is dealing with comparing of current request’s referrer field with the URL of previous request. The second is dealing with session creation, new sessions are created or comes in to one session due to threshold value of page stay time and session time. So, authors developed enhanced semantic distance based session identification algorithm that tackles above mentioned issues of traditional session identification methods. The enhanced semantic based method has an accuracy of 84 percent, which is higher than the Time based and Time-Referrer based session identification approaches. The authors also used adapted K-Means and Hierarchical Agglomerative clustering algorithms to improve the prediction of user browsing patterns. Clusters were found using a weighted dissimilarity matrix, which is calculated using two key parameters: page weight and session weight. The Dunn Index and Davies-Bouldin Index are then used to evaluate the clusters. Experimental results shows that more pure and accurate session clusters are formed when adapted clustering algorithms are applied on the weighted sessions rather than the session obtained from traditional sessionization algorithms. Accuracy of the semantic session cluster is higher compared with the cluster of sessions obtained using traditional sessionization.


Author(s):  
Zixin Liu ◽  
Zhibo Wang ◽  
Mingxing Ling

Side-channel attack (SCA) based on machine learning has proved to be a valid technique in cybersecurity, especially subjecting to the symmetric-key crypto implementations in serial operation. At the same time, parallel-encryption computing based on Field Programmable Gate Arrays (FPGAs) grows into a new influencer, but the attack results using machine learning are exiguous. Research on the traditional SCA has been mostly restricted to pre-processing: Signal Noisy Ratio (SNR) and Principal Component Analysis (PCA), etc. In this work, firstly, we propose to replace Points of Interests (POIs) and dimensionality reduction by utilizing word embedding, which converts power traces into sensitive vectors. Secondly, we combined sensitive vectors with Long Short Term Memories (LSTM) to execute SCA based on FPGA crypto-implementations. In addition, compared with traditional Template Attack (TA), Multiple Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN). The result shows that the proposed model can not only reduce the manual operation, such as parametric assumptions and dimensionality setting, which limits their range of application, but improve the effectiveness of side-channel attacks as well.


Author(s):  
Hosung Park ◽  
Changmin Kim ◽  
Hyunsoo Son ◽  
Soonshin Seo ◽  
Ji-Hwan Kim

In this study, an automatic end-to-end speech recognition system based on hybrid CTC-attention network for Korean language is proposed. Deep neural network/hidden Markov model (DNN/HMM)-based speech recognition system has driven dramatic improvement in this area. However, it is difficult for non-experts to develop speech recognition for new applications. End-to-end approaches have simplified speech recognition system into a single-network architecture. These approaches can develop speech recognition system that does not require expert knowledge. In this paper, we propose hybrid CTC-attention network as end-to-end speech recognition model for Korean language. This model effectively utilizes a CTC objective function during attention model training. This approach improves the performance in terms of speech recognition accuracy as well as training speed. In most languages, end-to-end speech recognition uses characters as output labels. However, for Korean, character-based end-to-end speech recognition is not an efficient approach because Korean language has 11,172 possible numbers of characters. The number is relatively large compared to other languages. For example, English has 26 characters, and Japanese has 50 characters. To address this problem, we utilize Korean 49 graphemes as output labels. Experimental result shows 10.02% character error rate (CER) when 740 hours of Korean training data are used.


Author(s):  
Romulo de Almeida Neves ◽  
Willian Massami Watanabe ◽  
Rafael Oliveira

Context: Widgets are reusable User Interfaces (UIs) components frequently delivered in Web applications.In the web application, widgets implement different interaction scenarios, such as buttons, menus, and text input.Problem: Tests are performed manually, so the cost associated with preparing and executing test cases is high.Objective: Automate the process of generating functional test cases for web applications, using intermediate artifacts of the web development process that structure widgets in the web application. The goal of this process is to ensure the quality of the software, reduce overall software lifecycle time and the costs associated with tests.Method:We elaborated a test generation strategy and implemented this strategy in a tool, Morpheus Web Testing. Morpheus Web Testing extracts widget information from Java Server Faces artifacts to generate test cases for JSF web applications. We conducted a case study for comparing Morpheus Web Testing with a state of the art tool (CrawlJax).Results: The results indicate evidence that the approach Morpheus Web Testing managed to reach greater code coverage compared to a CrawlJax.Conclusion: The achieved coverage values represent evidence that the results obtained from the proposed approach contribute to the process of automated test software engineering in the industry.


Author(s):  
Dimple Chehal ◽  
Parul Gupta ◽  
Payal Gulati

Sentiment analysis of product reviews on e-commerce platforms aids in determining the preferences of customers. Aspect-based sentiment analysis (ABSA) assists in identifying the contributing aspects and their corresponding polarity, thereby allowing for a more detailed analysis of the customer’s inclination toward product aspects. This analysis helps in the transition from the traditional rating-based recommendation process to an improved aspect-based process. To automate ABSA, a labelled dataset is required to train a supervised machine learning model. As the availability of such dataset is limited due to the involvement of human efforts, an annotated dataset has been provided here for performing ABSA on customer reviews of mobile phones. The dataset comprising of product reviews of Apple-iPhone11 has been manually annotated with predefined aspect categories and aspect sentiments. The dataset’s accuracy has been validated using state-of-the-art machine learning techniques such as Naïve Bayes, Support Vector Machine, Logistic Regression, Random Forest, K-Nearest Neighbor and Multi Layer Perceptron, a sequential model built with Keras API. The MLP model built through Keras Sequential API for classifying review text into aspect categories produced the most accurate result with 67.45 percent accuracy. K- nearest neighbor performed the worst with only 49.92 percent accuracy. The Support Vector Machine had the highest accuracy for classifying review text into aspect sentiments with an accuracy of 79.46 percent. The model built with Keras API had the lowest 76.30 percent accuracy. The contribution is beneficial as a benchmark dataset for ABSA of mobile phone reviews.


Author(s):  
S. Nickolas ◽  
K. Shobha

Data pre-processing plays a vital role in the life cycle of data mining for accomplishing quality outcomes. In this paper, it is experimentally shown the importance of data pre-processing to achieve highly accurate classifier outcomes by imputing missing values using a novel imputation method, CLUSTPRO, by selecting highly correlated features using Correlation-based Variable Selection (CVS) and by handling imbalanced data using Synthetic Minority Over-sampling Technique (SMOTE). The proposed CLUSTPRO method makes use of Random Forest (RF) and Expectation Maximization (EM) algorithms to impute missing. The imputed results are evaluated using standard evaluation metrics. The CLUSTPRO imputation method outperforms existing, state-of-the-art imputation methods. The combined approach of imputation, feature selection, and imbalanced data handling techniques has significantly contributed to attaining an improved classification accuracy (AUC curve) of 40%–50% in comparison with results obtained without any pre-processing.


Sign in / Sign up

Export Citation Format

Share Document