scholarly journals Minimum free energy predicted base pairing in the 39 nt spliced leader and 5’ UTR of calmodulin mRNA from Trypanosoma cruzi: influence of the multiple trans-splicing sites

2018 ◽  
Vol 90 (2 suppl 1) ◽  
pp. 2311-2316
Author(s):  
FRANKLYN SAMUDIO ◽  
ADEILTON BRANDÃO
2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i258-i267 ◽  
Author(s):  
He Zhang ◽  
Liang Zhang ◽  
David H Mathews ◽  
Liang Huang

Abstract Motivation RNA secondary structure prediction is widely used to understand RNA function. Recently, there has been a shift away from the classical minimum free energy methods to partition function-based methods that account for folding ensembles and can therefore estimate structure and base pair probabilities. However, the classical partition function algorithm scales cubically with sequence length, and is therefore prohibitively slow for long sequences. This slowness is even more severe than cubic-time free energy minimization due to a substantially larger constant factor in runtime. Results Inspired by the success of our recent LinearFold algorithm that predicts the approximate minimum free energy structure in linear time, we design a similar linear-time heuristic algorithm, LinearPartition, to approximate the partition function and base-pairing probabilities, which is shown to be orders of magnitude faster than Vienna RNAfold and CONTRAfold (e.g. 2.5 days versus 1.3 min on a sequence with length 32 753 nt). More interestingly, the resulting base-pairing probabilities are even better correlated with the ground-truth structures. LinearPartition also leads to a small accuracy improvement when used for downstream structure prediction on families with the longest length sequences (16S and 23S rRNAs), as well as a substantial improvement on long-distance base pairs (500+ nt apart). Availability and implementation Code: http://github.com/LinearFold/LinearPartition; Server: http://linearfold.org/partition. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Ben Cao ◽  
Xiaokang Zhang ◽  
Jieqiong Wu ◽  
Bin Wang ◽  
Qiang Zhang ◽  
...  

Author(s):  
H. Jelger Risselada ◽  
Helmut Grubmüller

AbstractFusion proteins can play a versatile and involved role during all stages of the fusion reaction. Their roles go far beyond forcing the opposing membranes into close proximity to drive stalk formation and fusion. Molecular simulations have played a central role in providing a molecular understanding of how fusion proteins actively overcome the free energy barriers of the fusion reaction up to the expansion of the fusion pore. Unexpectedly, molecular simulations have revealed a preference of the biological fusion reaction to proceed through asymmetric pathways resulting in the formation of, e.g., a stalk-hole complex, rim-pore, or vertex pore. Force-field based molecular simulations are now able to directly resolve the minimum free-energy path in protein-mediated fusion as well as quantifying the free energies of formed reaction intermediates. Ongoing developments in Graphics Processing Units (GPUs), free energy calculations, and coarse-grained force-fields will soon gain additional insights into the diverse roles of fusion proteins.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Junwei Wang ◽  
Chrameh Fru Mbah ◽  
Thomas Przybilla ◽  
Benjamin Apeleo Zubiri ◽  
Erdmann Spiecker ◽  
...  

2017 ◽  
Vol 147 (15) ◽  
pp. 152718 ◽  
Author(s):  
Clark Templeton ◽  
Szu-Hua Chen ◽  
Arman Fathizadeh ◽  
Ron Elber

2017 ◽  
Vol 45 (14) ◽  
pp. 8474-8483 ◽  
Author(s):  
Lucas Philippe ◽  
George C. Pandarakalam ◽  
Rotimi Fasimoye ◽  
Neale Harrison ◽  
Bernadette Connolly ◽  
...  

2013 ◽  
Vol 108 (6) ◽  
pp. 707-717 ◽  
Author(s):  
Marina de Moraes Mourao ◽  
Maina Bitar ◽  
Francisco Pereira Lobo ◽  
Ana Paula Peconick ◽  
Priscila Grynberg ◽  
...  

2017 ◽  
Vol 114 (21) ◽  
pp. E4158-E4167 ◽  
Author(s):  
Bogdan Lev ◽  
Samuel Murail ◽  
Frédéric Poitevin ◽  
Brett A. Cromer ◽  
Marc Baaden ◽  
...  

Pentameric ligand-gated ion channels control synaptic neurotransmission by converting chemical signals into electrical signals. Agonist binding leads to rapid signal transduction via an allosteric mechanism, where global protein conformational changes open a pore across the nerve cell membrane. We use all-atom molecular dynamics with a swarm-based string method to solve for the minimum free-energy gating pathways of the proton-activated bacterial GLIC channel. We describe stable wetted/open and dewetted/closed states, and uncover conformational changes in the agonist-binding extracellular domain, ion-conducting transmembrane domain, and gating interface that control communication between these domains. Transition analysis is used to compute free-energy surfaces that suggest allosteric pathways; stabilization with pH; and intermediates, including states that facilitate channel closing in the presence of an agonist. We describe a switching mechanism that senses proton binding by marked reorganization of subunit interface, altering the packing of β-sheets to induce changes that lead to asynchronous pore-lining M2 helix movements. These results provide molecular details of GLIC gating and insight into the allosteric mechanisms for the superfamily of pentameric ligand-gated channels.


Sign in / Sign up

Export Citation Format

Share Document