subunit interface
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 39)

H-INDEX

36
(FIVE YEARS 5)

Langmuir ◽  
2022 ◽  
Author(s):  
Zhipeng Li ◽  
Basudev Maity ◽  
Yuki Hishikawa ◽  
Takafumi Ueno ◽  
Diannan Lu

2021 ◽  
Vol 17 (12) ◽  
pp. e1010083
Author(s):  
Manuela Bieri ◽  
Rodinde Hendrickx ◽  
Michael Bauer ◽  
Bin Yu ◽  
Tania Jetzer ◽  
...  

Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvβ6 and αvβ8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mβ6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvβ6-positive CMT-93 cells, whereas mβ8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvβ8-positive M000216 cells. Soluble integrin αvβ6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvβ6/αvβ8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvβ6/β8, where the distal leucine residue dips into a hydrophobic pocket of β6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvβ6/β8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvβ6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission.


2021 ◽  
Author(s):  
Federico M. Ruiz ◽  
Sonia Huecas ◽  
Alicia Santos-Aledo ◽  
Elena A. Prim ◽  
José M. Andreu ◽  
...  

Treadmilling protein filaments perform essential cellular functions by growing from one end while shrinking from the other, driven by nucleotide hydrolysis. Bacterial cell division relies on the primitive tubulin homolog FtsZ, a target for antibiotic discovery that assembles into single treadmilling filaments that hydrolyse GTP at an active site formed upon subunit association. We determined high-resolution filament structures of FtsZ from the pathogen Staphylococcus aureus in complex with different nucleotide analogues and cations, including mimetics of the ground and transition states of catalysis. Together with mutational and biochemical analyses, our structures reveal interactions made by the GTP γ-phosphate and Mg2+ at the subunit interface, a K+ ion stabilizing loop T7 for co-catalysis, new roles of key residues at the active site and a nearby crosstalk area, and rearrangements of a dynamic water shell bridging adjacent subunits upon GTP hydrolysis. We propose a mechanistic model that integrates nucleotide hydrolysis signalling with assembly-associated conformational changes and filament treadmilling. Equivalent assembly mechanisms may apply to more complex tubulin and actin cytomotive filaments that share analogous features with FtsZ.


2021 ◽  
Author(s):  
Ashok Nayak ◽  
Montserrat Samso

Activation of the intracellular Ca2+ channel ryanodine receptor (RyR) triggers a cytosolic Ca2+ surge, while elevated cytosolic Ca2+ inhibits the channel in a negative feedback mechanism. Cryo-EM carried out under partially inactivating Ca2+ conditions revealed two conformations of RyR1, an open state and an inactivated state, resolved at 4.0 and 3.3 Angstroms resolution, respectively. RyR1s were embedded in nanodiscs with two lipids resolved at each inter-subunit crevice. Ca2+ binding to the high affinity site engages the central (CD) and C-terminal domains (CTD) into a quasi-rigid unit, which separates the S6 four-helix bundle and opens the channel. Further out-of-plane rotation of the quasi-rigid unit pushes S6 towards the central axis, closing (inactivating) the channel. The inactivated conformation is characterized by a downward conformation of the cytoplasmic assembly, a tightly-knit subunit interface contributed by a fully occupied and partially remodeled Ca2+ activation site, and two salt bridges between the EF hand domain and the S2-S3 loop of the neighboring subunit validated by naturally-occurring disease-causing mutations. Ca2+ also bound to ATP, mediating a tighter interaction between S6 and CTD. Our study suggests that the closed-inactivated is a distinctive state of the RyR1 and its transition to the closed-activable state is not a simple reverse of the Ca2+ mediated activation pathway.


Author(s):  
Alexander Dibrov ◽  
Muntahi Mourin ◽  
Pavel Dibrov ◽  
Grant N. Pierce

AbstractThe Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) is the major Na+ pump in aerobic pathogens such as Vibrio cholerae. The interface between two of the NQR subunits, NqrB and NqrD, has been proposed to harbor a binding site for inhibitors of Na+-NQR. While the mechanisms underlying Na+-NQR function and inhibition remain underinvestigated, their clarification would facilitate the design of compounds suitable for clinical use against pathogens containing Na+-NQR. An in silico model of the NqrB–D interface suitable for use in molecular dynamics simulations was successfully constructed. A combination of algorithmic and manual methods was used to reconstruct portions of the two subunits unresolved in the published crystal structure and validate the resulting structure. Hardware and software optimizations that improved the efficiency of the simulation were considered and tested. The geometry of the reconstructed complex compared favorably to the published V. cholerae Na+-NQR crystal structure. Results from one 1 µs, three 150 ns and two 50 ns molecular dynamics simulations illustrated the stability of the system and defined the limitations of this model. When placed in a lipid bilayer under periodic boundary conditions, the reconstructed complex was completely stable for at least 1 µs. However, the NqrB–D interface underwent a non-physiological transition after 350 ns.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Solène N Lefebvre ◽  
Antoine Taly ◽  
Anaïs Menny ◽  
Karima Medjebeur ◽  
Pierre-Jean Corringer

Pentameric ligand-gated ion channels (pLGICs) mediate chemical signaling through a succession of allosteric transitions that are yet not completely understood as intermediate states remain poorly characterized by structural approaches. In a previous study on the prototypic bacterial proton-gated channel GLIC, we generated several fluorescent sensors of the protein conformation that report a fast transition to a pre-active state, which precedes the slower process of activation with pore opening. Here, we explored the phenotype of a series of allosteric mutations, using paralleled steady-state fluorescence and electrophysiological measurements over a broad pH range. Our data, fitted to a 3-states Monod-Wyman-Changeux (MWC) model, show that mutations at the subunit interface in the extracellular domain (ECD) principally alter pre-activation, while mutations in the lower ECD and in the transmembrane domain principally alter activation. We also show that propofol alters both transitions. Data are discussed in the framework of transition pathways generated by normal mode analysis (iModFit) that suggest collective protein motions concerted with pore opening. It further supports that pre-activation involves major quaternary compaction of the ECD, and suggests that activation involves principally a re-organization of a 'central gating region' involving a contraction of the ECD β-sandwich and the tilt of the channel lining M2 helix.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jakob M. Silberberg ◽  
Robin A. Corey ◽  
Lisa Hielkema ◽  
Charlott Stock ◽  
Phillip J. Stansfeld ◽  
...  

AbstractKdpFABC, a high-affinity K+ pump, combines the ion channel KdpA and the P-type ATPase KdpB to secure survival at K+ limitation. Here, we apply a combination of cryo-EM, biochemical assays, and MD simulations to illuminate the mechanisms underlying transport and the coupling to ATP hydrolysis. We show that ions are transported via an intersubunit tunnel through KdpA and KdpB. At the subunit interface, the tunnel is constricted by a phenylalanine, which, by polarized cation-π stacking, controls K+ entry into the canonical substrate binding site (CBS) of KdpB. Within the CBS, ATPase coupling is mediated by the charge distribution between an aspartate and a lysine. Interestingly, individual elements of the ion translocation mechanism of KdpFABC identified here are conserved among a wide variety of P-type ATPases from different families. This leads us to the hypothesis that KdpB might represent an early descendant of a common ancestor of cation pumps.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jaya Joshi ◽  
Manaki Mimura ◽  
Masaharu Suzuki ◽  
Shan Wu ◽  
Jesse F. Gregory ◽  
...  

The thiamin-requiring mutants of Arabidopsis have a storied history as a foundational model for biochemical genetics in plants and have illuminated the central role of thiamin in metabolism. Recent integrative genetic and biochemical analyses of thiamin biosynthesis and utilization imply that leaf metabolism normally operates close to thiamin-limiting conditions. Thus, the mechanisms that allocate thiamin-diphosphate (ThDP) cofactor among the diverse thiamin-dependent enzymes localized in plastids, mitochondria, peroxisomes, and the cytosol comprise an intricate thiamin economy. Here, we show that the classical thiamin-requiring 3 (th3) mutant is a point mutation in plastid localized 5-deoxyxylulose synthase 1 (DXS1), a key regulated enzyme in the methylerythritol 4-phosphate (MEP) isoprene biosynthesis pathway. Substitution of a lysine for a highly conserved glutamate residue (E323) located at the subunit interface of the homodimeric enzyme conditions a hypomorphic phenotype that can be rescued by supplying low concentrations of thiamin in the medium. Analysis of leaf thiamin vitamers showed that supplementing the medium with thiamin increased total ThDP content in both wild type and th3 mutant plants, supporting a hypothesis that the mutant DXS1 enzyme has a reduced affinity for the ThDP cofactor. An unexpected upregulation of a suite of biotic-stress-response genes associated with accumulation of downstream MEP intermediate MEcPP suggests that th3 causes mis-regulation of DXS1 activity in thiamin-supplemented plants. Overall, these results highlight that the central role of ThDP availability in regulation of DXS1 activity and flux through the MEP pathway.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stefan Gerhardy ◽  
Michaela Oborská-Oplová ◽  
Ludovic Gillet ◽  
Richard Börner ◽  
Rob van Nues ◽  
...  

AbstractProductive ribosomal RNA (rRNA) compaction during ribosome assembly necessitates establishing correct tertiary contacts between distant secondary structure elements. Here, we quantify the response of the yeast proteome to low temperature (LT), a condition where aberrant mis-paired RNA folding intermediates accumulate. We show that, at LT, yeast cells globally boost production of their ribosome assembly machinery. We find that the LT-induced assembly factor, Puf6, binds to the nascent catalytic RNA-rich subunit interface within the 60S pre-ribosome, at a site that eventually loads the nuclear export apparatus. Ensemble Förster resonance energy transfer studies show that Puf6 mimics the role of Mg2+ to usher a unique long-range tertiary contact to compact rRNA. At LT, puf6 mutants accumulate 60S pre-ribosomes in the nucleus, thus unveiling Puf6-mediated rRNA compaction as a critical temperature-regulated rescue mechanism that counters rRNA misfolding to prime export competence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph Che-Yen Wang ◽  
Lingling Chen

AbstractHuman mitochondrial chaperonin mHsp60 is essential for mitochondrial function by assisting folding of mitochondrial proteins. Unlike the double-ring bacterial GroEL, mHsp60 exists as a heptameric ring that is unstable and dissociates to subunits. The structural dynamics has been implicated for a unique mechanism of mHsp60. We purified active heptameric mHsp60, and determined a cryo-EM structure of mHsp60 heptamer at 3.4 Å. Of the three domains, the equatorial domains contribute most to the inter-subunit interactions, which include a four-stranded β sheet. Our structural comparison with GroEL shows that mHsp60 contains several unique sequences that directly decrease the sidechain interactions around the β sheet and indirectly shorten β strands by disengaging the backbones of the flanking residues from hydrogen bonding in the β strand conformation. The decreased inter-subunit interactions result in a small inter-subunit interface in mHsp60 compared to GroEL, providing a structural basis for the dynamics of mHsp60 subunit association. Importantly, the unique sequences are conserved among higher eukaryotic mitochondrial chaperonins, suggesting the importance of structural dynamics for eukaryotic chaperonins. Our structural comparison with the single-ring mHsp60-mHsp10 shows that upon mHsp10 binding the shortened inter-subunit β sheet is restored and the overall inter-subunit interface of mHsp60 increases drastically. Our structural basis for the mHsp10 induced stabilization of mHsp60 subunit interaction is consistent with the literature that mHsp10 stabilizes mHsp60 quaternary structure. Together, our studies provide structural bases for structural dynamics of the mHsp60 heptamer and for the stabilizing effect of mHsp10 on mHsp60 subunit association.


Sign in / Sign up

Export Citation Format

Share Document