scholarly journals Comparing a Dynamic Fed-Batch and a Continuous Steady-State Simulation of Ethanol Fermentation in a Distillery to a Stoichiometric Conversion Simulation

2017 ◽  
Vol 34 (4) ◽  
pp. 1121-1131 ◽  
Author(s):  
G.C. Fonseca ◽  
C.B.B. Costa ◽  
A.J.G. Cruz
2012 ◽  
Vol 557-559 ◽  
pp. 2151-2154
Author(s):  
Zhen Liu ◽  
Qing Hui Chang

The conventional ethanol fermentaion is a typical inhibitory process, leading to low productivity and yield. A new ethanol fermentation process coupled with gas stripping and vacuum flash, named as strip-flash fermentation, is proposed. The process is provided with the advantages of both stripping fermentation and flash fermentation, and improves the ethanol productivity by increasing the in-situ ethanol removal. And a model of flash-strip fermentation process was established. The theoretically analyses indicate that increasing gas flux and liquid phase recycling ratio can help to enhance productivity and yield of strip-flash fermentation process, and comparison to striping fermentation or flash fermentation, flash-strip fermentation has shown a better productivity. The results has also shown the possibilities of further application and optimization of this process.


Author(s):  
D. Keith Walters ◽  
Greg W. Burgreen ◽  
Robert L. Hester ◽  
David S. Thompson ◽  
David M. Lavallee ◽  
...  

Computational fluid dynamics (CFD) simulations were performed for unsteady periodic breathing conditions, using large-scale models of the human lung airway. The computational domain included fully coupled representations of the orotracheal region and large conducting zone up to generation four (G4) obtained from patient-specific CT data, and the small conducting zone (to G16) obtained from a stochastically generated airway tree with statistically realistic geometrical characteristics. A reduced-order geometry was used, in which several airway branches in each generation were truncated, and only select flow paths were retained to G16. The inlet and outlet flow boundaries corresponded to the oronasal opening (superior), the inlet/outlet planes in terminal bronchioles (distal), and the unresolved airway boundaries arising from the truncation procedure (intermediate). The cyclic flow was specified according to the predicted ventilation patterns for a healthy adult male at three different activity levels, supplied by the whole-body modeling software HumMod. The CFD simulations were performed using Ansys FLUENT. The mass flow distribution at the distal boundaries was prescribed using a previously documented methodology, in which the percentage of the total flow for each boundary was first determined from a steady-state simulation with an applied flow rate equal to the average during the inhalation phase of the breathing cycle. The distal pressure boundary conditions for the steady-state simulation were set using a stochastic coupling procedure to ensure physiologically realistic flow conditions. The results show that: 1) physiologically realistic flow is obtained in the model, in terms of cyclic mass conservation and approximately uniform pressure distribution in the distal airways; 2) the predicted alveolar pressure is in good agreement with previously documented values; and 3) the use of reduced-order geometry modeling allows accurate and efficient simulation of large-scale breathing lung flow, provided care is taken to use a physiologically realistic geometry and to properly address the unsteady boundary conditions.


2006 ◽  
Vol 38 (9) ◽  
pp. 711-727 ◽  
Author(s):  
Emily K. Lada ◽  
Natalie M. Steiger ◽  
James R. Wilson

Sign in / Sign up

Export Citation Format

Share Document